共查询到20条相似文献,搜索用时 15 毫秒
1.
Many of the existing methods of finding calibration intervals in simple linear regression rely on the inversion of prediction limits. In this article, we propose an alternative procedure which involves two stages. In the first stage, we find a confidence interval for the value of the explanatory variable which corresponds to the given future value of the response. In the second stage, we enlarge the confidence interval found in the first stage to form a confidence interval called, calibration interval, for the value of the explanatory variable which corresponds to the theoretical mean value of the future observation. In finding the confidence interval in the first stage, we have used the method based on hypothesis testing and percentile bootstrap. When the errors are normally distributed, the coverage probability of resulting calibration interval based on hypothesis testing is comparable to that of the classical calibration interval. In the case of non normal errors, the coverage probability of the calibration interval based on hypothesis testing is much closer to the target value than that of the calibration interval based on percentile bootstrap. 相似文献
2.
Derek S. Young 《统计学通讯:模拟与计算》2013,42(9):2040-2055
In this article, we discuss the utility of tolerance intervals for various regression models. We begin with a discussion of tolerance intervals for linear and nonlinear regression models. We then introduce a novel method for constructing nonparametric regression tolerance intervals by extending the well-established procedure for univariate data. Simulation results and application to real datasets are presented to help visualize regression tolerance intervals and to demonstrate that the methods we discuss have coverage probabilities very close to the specified nominal confidence level. 相似文献
3.
Abstract. The focus of this article is on simultaneous confidence bands over a rectangular covariate region for a linear regression model with k>1 covariates, for which only conservative or approximate confidence bands are available in the statistical literature stretching back to Working & Hotelling (J. Amer. Statist. Assoc. 24 , 1929; 73–85). Formulas of simultaneous confidence levels of the hyperbolic and constant width bands are provided. These involve only a k‐dimensional integral; it is unlikely that the simultaneous confidence levels can be expressed as an integral of less than k‐dimension. These formulas allow the construction for the first time of exact hyperbolic and constant width confidence bands for at least a small k(>1) by using numerical quadrature. Comparison between the hyperbolic and constant width bands is then addressed under both the average width and minimum volume confidence set criteria. It is observed that the constant width band can be drastically less efficient than the hyperbolic band when k>1. Finally it is pointed out how the methods given in this article can be applied to more general regression models such as fixed‐effect or random‐effect generalized linear regression models. 相似文献
4.
P. Ah-Kine 《统计学通讯:理论与方法》2013,42(3):441-452
A simultaneous confidence band provides useful information on the plausible range of an unknown regression model function, just as a confidence interval gives the plausible range of an unknown parameter. For a multiple linear regression model, confidence bands of different shapes, such as the hyperbolic band and the constant width band, can be constructed and the predictor variable region over which a confidence band is constructed can take various forms. One interesting but unsolved problem is to find the optimal (shape) confidence band over an ellipsoidal region χE under the Minimum Volume Confidence Set (MVCS) criterion of Liu and Hayter (2007) and Liu et al. (2009). This problem is challenging as it involves optimization over an unknown function that determines the shape of the confidence band over χE. As a step towards solving this difficult problem, in this paper, we introduce a family of confidence bands over χE, called the inner-hyperbolic bands, which includes the hyperbolic and constant-width bands as special cases. We then search for the optimal confidence band within this family under the MVCS criterion. The conclusion from this study is that the hyperbolic band is not optimal even within this family of inner-hyperbolic bands and so cannot be the overall optimal band. On the other hand, the constant width band can be optimal within the family of inner-hyperbolic bands when the region χE is small and so might be the overall optimal band. 相似文献
5.
《统计学通讯:理论与方法》2012,41(13-14):2367-2385
Orthogonal regression is a proper tool to analyze relations between two variables when three-part compositional data, i.e., three-part observations carrying relative information (like proportions or percentages), are under examination. When linear statistical models with type-II constraints (constraints involving other parameters besides the ones of the unknown model) are employed for estimating the parameters of the regression line, approximate variances and covariances of the estimated line coefficients can be determined. Moreover, the additional assumption of normality enables to construct confidence domains and perform hypotheses testing. The theoretical results are applied to a real-world example. 相似文献
6.
A nonparametric method based on the empirical likelihood is proposed to detect the change-point in the coefficient of linear regression models. The empirical likelihood ratio test statistic is proved to have the same asymptotic null distribution as that with classical parametric likelihood. Under some mild conditions, the maximum empirical likelihood change-point estimator is also shown to be consistent. The simulation results show the sensitivity and robustness of the proposed approach. The method is applied to some real datasets to illustrate the effectiveness. 相似文献
7.
Feng Gao 《统计学通讯:模拟与计算》2013,42(9):1434-1443
This article mainly aims to study the superiority of the notion of linearized ridge regression estimator (LRRE) under the mean squared error criterion in a linear regression model. Firstly, we derive uniform lower bound of MSE for the class of the generalized shrinkage estimator (GSE), based on which it is shown that the optimal LRRE is the best estimator in the class of GSE's. Secondly, we propose the notion of the almost unbiased completeness and show that LRRE possesses such a property. Thirdly, the simulation study is given, from which it indicates that the LRRE performs desirably. Finally, the main results are applied to the well known Hald data. 相似文献
8.
E. Carlstein 《The American statistician》2013,67(4):277-279
After observing n independent responses at n corresponding design points in a linear regression setting, one wishes to make a confidence statement about future responses that will apply simultaneously to all possible design points. Two appropriate prediction regions are derived using normal theory. 相似文献
9.
从属性、构建方法及意义等方面,分析研究线性回归模型在计量经济学和统计学两学科视角下的差异,并根据这种差异进一步提出回归模型的基本设定思路。研究表明:识别这种差异是完成模型设定工作的基础性和必要性举措,有助于实现线性回归模型的正确设定。以经典例证对计量经济学和统计学回归模型在应用中的区别以及模型设定问题进行进一步展示和分析。 相似文献
10.
The study of a linear regression model with an interval-censored covariate, which was motivated by an acquired immunodeficiency syndrome (AIDS) clinical trial, was first proposed by Gómez et al. They developed a likelihood approach, together with a two-step conditional algorithm, to estimate the regression coefficients in the model. However, their method is inapplicable when the interval-censored covariate is continuous. In this article, we propose a novel and fast method to treat the continuous interval-censored covariate. By using logspline density estimation, we impute the interval-censored covariate with a conditional expectation. Then, the ordinary least-squares method is applied to the linear regression model with the imputed covariate. To assess the performance of the proposed method, we compare our imputation with the midpoint imputation and the semiparametric hierarchical method via simulations. Furthermore, an application to the AIDS clinical trial is presented. 相似文献
11.
Suppose that we have a nonparametric regression model Y = m(X) + ε with X ∈ Rp, where X is a random design variable and is observed completely, and Y is the response variable and some Y-values are missing at random. Based on the “complete” data sets for Y after nonaprametric regression imputation and inverse probability weighted imputation, two estimators of the regression function m(x0) for fixed x0 ∈ Rp are proposed. Asymptotic normality of two estimators is established, which is used to construct normal approximation-based confidence intervals for m(x0). We also construct an empirical likelihood (EL) statistic for m(x0) with limiting distribution of χ21, which is used to construct an EL confidence interval for m(x0). 相似文献
12.
The problems of constructing tolerance intervals for the binomial and Poisson distributions are considered. Closed-form approximate equal-tailed tolerance intervals (that control percentages in both tails) are proposed for both distributions. Exact coverage probabilities and expected widths are evaluated for the proposed equal-tailed tolerance intervals and the existing intervals. Furthermore, an adjustment to the nominal confidence level is suggested so that an equal-tailed tolerance interval can be used as a tolerance interval which includes a specified proportion of the population, but does not necessarily control percentages in both tails. Comparison of such coverage-adjusted tolerance intervals with respect to coverage probabilities and expected widths indicates that the closed-form approximate tolerance intervals are comparable with others, and less conservative, with minimum coverage probabilities close to the nominal level in most cases. The approximate tolerance intervals are simple and easy to compute using a calculator, and they can be recommended for practical applications. The methods are illustrated using two practical examples. 相似文献
13.
Abstract. We study the coverage properties of Bayesian confidence intervals for the smooth component functions of generalized additive models (GAMs) represented using any penalized regression spline approach. The intervals are the usual generalization of the intervals first proposed by Wahba and Silverman in 1983 and 1985, respectively, to the GAM component context. We present simulation evidence showing these intervals have close to nominal ‘across‐the‐function’ frequentist coverage probabilities, except when the truth is close to a straight line/plane function. We extend the argument introduced by Nychka in 1988 for univariate smoothing splines to explain these results. The theoretical argument suggests that close to nominal coverage probabilities can be achieved, provided that heavy oversmoothing is avoided, so that the bias is not too large a proportion of the sampling variability. The theoretical results allow us to derive alternative intervals from a purely frequentist point of view, and to explain the impact that the neglect of smoothing parameter variability has on confidence interval performance. They also suggest switching the target of inference for component‐wise intervals away from smooth components in the space of the GAM identifiability constraints. 相似文献
14.
In this article, a general class of estimators for the linear regression model affected by outliers and collinearity is introduced and studied in some detail. This class of estimators combines the theory of light, maximum entropy, and robust regression techniques. Our theoretical findings are illustrated through a Monte Carlo simulation study. 相似文献
15.
16.
In this article, we consider the progressive Type II right censored sample from Pareto distribution. We introduce a new approach for constructing the simultaneous confidence interval of the unknown parameters of this distribution under progressive censoring. A Monte Carlo study is also presented for illustration. It is shown that this confidence region has a smaller area than that introduced by Ku? and Kaya (2007). 相似文献
17.
18.
A combined simple linear and Haar-wavelet regression model is the combination of a simple linear model and a Haar-wavelet regression model. In this article we show how to construct D-optimal designs for a combined simple linear and Haar-wavelet regression model. An example is also given. 相似文献
19.
Confidence Intervals in Regression That Utilize Uncertain Prior Information About a Vector Parameter
Consider a linear regression model with independent normally distributed errors. Suppose that the scalar parameter of interest is a specified linear combination of the components of the regression parameter vector. Also suppose that we have uncertain prior information that a parameter vector, consisting of specified distinct linear combinations of these components, takes a given value. Part of our evaluation of a frequentist confidence interval for the parameter of interest is the scaled expected length, defined to be the expected length of this confidence interval divided by the expected length of the standard confidence interval for this parameter, with the same confidence coefficient. We say that a confidence interval for the parameter of interest utilizes this uncertain prior information if (a) the scaled expected length of this interval is substantially less than one when the prior information is correct, (b) the maximum value of the scaled expected length is not too large and (c) this confidence interval reverts to the standard confidence interval, with the same confidence coefficient, when the data happen to strongly contradict the prior information. We present a new confidence interval for a scalar parameter of interest, with specified confidence coefficient, that utilizes this uncertain prior information. A factorial experiment with one replicate is used to illustrate the application of this new confidence interval. 相似文献
20.
This article primarily aims to put forward the linearized restricted ridge regression (LRRR) estimator in linear regression models. Two types of LRRR estimators are investigated under the PRESS criterion and the optimal LRRR estimators and the optimal restricted generalized ridge regression estimator are obtained. We apply the results to the Hald data and finally make a simulation study by using the method of McDonald and Galarneau. 相似文献