首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bayesian control charts have been proposed for monitoring multivariate processes with the multivariate exponentially weighted moving average (MEWMA) statistic. It has been suggested that we use limits based on the predictive distribution of the MEWMA statistic. This analysis, however is based on the erroneous result that the average run length (ARL) is a function of the exceedance probability, that is, the probability that the first point exceeds the control limit. We show how this result can be corrected and we discuss how the Bayesian MEWMA chart with limits based on the predictive distribution compares with other multivariate control chart procedures.  相似文献   

2.
Compared to the grid search approach to optimal design of control charts, the gradient-based approach is more computationally efficient as the gradient information indicates the direction to search the optimal design parameters. However, the optimal parameters of multivariate exponentially weighted moving average (MEWMA) control charts are often obtained by using grid search in the existing literature. Note that the average run length (ARL) performance of the MEWMA chart can be calculated based on a Markov chain model, making it feasible to estimate the ARL gradient from it. Motivated by this, this paper develops an ARL gradient-based approach for the optimal design and sensitivity analysis of MEWMA control charts. It is shown that the proposed method is able to provide a fast, accurate, and easy-to-implement algorithm for the design and analysis of MEWMA charts, as compared to the conventional design approach based on grid search.  相似文献   

3.
A multivariate synthetic exponentially weighted moving average (MSEWMA) control chart is presented in this study. The MSEWMA control chart consists of a multivariate exponentially weighted moving average (MEWMA) control chart and a conforming run length control chart. The average run length of the MSEWMA control chart is obtained using a Markov chain approach. From the numerical comparisons, it is shown that the MSEWMA control chart is more efficient than the multivariate synthetic T 2 control chart and the MEWMA control chart for detecting shifts in the process mean vector.  相似文献   

4.
Standard multivariate control charts usually employ fixed sample sizes at equal sampling intervals to monitor a process. In this study, a multivariate exponential weighted moving average (MEWMA) chart with adaptive sample sizes is investigated. Performance measure of the adaptive-sample-size MEWMA chart is obtained through a Markov chain approach. The performance of the adaptive-sample-size MEWMA chart is compared with the fixed-sample-size control chart in terms of steady-state average run length for different magnitude of shifts in the process mean. It is shown that the adaptive-sample-size chart is more efficient than the fixed-sample-size MEWMA control chart in detecting shifts in the process mean.  相似文献   

5.
The adaptive exponentially weighted moving average (AEWMA) control chart is a smooth combination of the Shewhart and exponentially weighted moving average (EWMA) control charts. This chart was proposed by Cappizzi and Masarotto (2003) to achieve a reasonable performance for both small and large shifts. Cappizzi and Masarotto (2003) used a pair of shifts in designing their control chart. In this study, however, the process mean shift is considered as a random variable with a certain probability distribution and the AEWMA control chart is optimized for a wide range of mean shifts according to that probability distribution and not just for a pair of shifts. Using the Markov chain technique, the results show that the new optimization design can improve the performance of the AEWMA control chart from an overall point of view relative to the various designs presented by Cappizzi and Masarotto (2003). Optimal design parameters that achieve the desired in-control average run length (ARL) are computed in several cases and formulas used to find approximately their values are given. Using these formulas, the practitioner can compute the optimal design parameters corresponding to any desired in-control ARL without the need to apply the optimization procedure. The results obtained by these formulas are very promising and would particularly facilitate the design of the AEWMA control chart for any in-control ARL value.  相似文献   

6.
Since multi-attribute control charts have received little attention compared with multivariate variable control charts, this research is concerned with developing a new methodology to employ the multivariate exponentially weighted moving average (MEWMA) charts for m-attribute binomial processes; the attributes being the number of nonconforming items. Moreover, since the variable sample size and sampling interval (VSSI) MEWMA charts detect small process mean shifts faster than the traditional MEWMA, an economic design of the VSSI MEWMA chart is proposed to obtain the optimum design parameters of the chart. The sample size, the sampling interval, and the warning/action limit coefficients are obtained using a genetic algorithm such that the expected total cost per hour is minimized. At the end, a sensitivity analysis has been carried out to investigate the effects of the cost and the model parameters on the solution of the economic design of the VSSI MEWMA chart.  相似文献   

7.
ABSTRACT

In recent years, effective monitoring of data quality has increasingly attracted attention of researchers in the area of statistical process control. Among the relevant research on this topic, none used multivariate methods to control the multidimensional data quality process, but instead relied on multiple univariate control charts. Based on a novel one-sided multivariate exponentially weighted moving average (MEWMA) chart, we propose a conditional false discovery rate-adjusted scheme to on-line monitor the data quality of high-dimensional data streams. With thousands of input data streams, the average run length loses its usefulness because one will likely have out-of-control signals at each time period. Hence, we first control the percentage of signals that are false alarms. Then, we compare the power of the proposed MEWMA scheme with that of two alternative methods. Compared with two competitors, numerical results show that the proposed MEWMA scheme has higher average power.  相似文献   

8.
The double exponentially weighted moving average (DEWMA) technique has been investigated in recent years for detecting shifts in the process mean and has been shown to be more efficient than the corresponding exponentially weighted moving average (EWMA) technique. In this article, we extend the DEWMA technique of performing exponential smoothing twice to the double moving average (DMA) technique by computing the moving average twice. Using simulation, we show that our proposed DMA chart improves upon the ARL performance of the moving average (MA) chart in detecting mean shifts of small to moderate magnitudes. It is also shown through simulation that, generally, the DMA charts with spans, w = 10 and 15 provide comparable average run length (ARL) performances to the EWMA and cumulative sum (CUSUM) charts, designed for detecting small shifts.  相似文献   

9.
Statistical design is applied to a multivariate exponentially weighted moving average (MEWMA) control chart. The chart parameters are control limit H and smoothing constant r. The choices of the parameters depend on the number of variables p and the size of the process mean shift δ. The MEWMA statistic is modeled as a Markov chain and the Markov chain approach is used to determine the properties of the chart. Although average run length has become a traditional measure of the performance of control schemes, some authors have suggested other measures, such as median and other percentiles of the run length distribution to explain run length properties of a control scheme. This will allow a thorough study of the performance of the control scheme. Consequently, conclusions based on these measures would provide a better and comprehensive understanding of a scheme. In this article, we present the performance of the MEWMA control chart as measured by the average run length and median run length. Graphs are given so that the chart parameters of an optimal MEWMA chart can be determined easily.  相似文献   

10.
Multivariate exponential weighted moving average and cumulative sum charts are the most common memory type multivariate control charts. They make use of the present and past information to detect small shifts in the process parameter(s). In this article, we propose two new multivariate control charts using a mixed version of their design setups. The plotting statistics of the proposed charts are based on the cumulative sum of the multivariate exponentially weighted moving averages. The performances of these schemes are evaluated in terms of average run length. The proposals are compared with their existing counterparts, including HotellingT2, MCUSUM, MEWMA, and MC1 charts. An application example is also presented for practical considerations using a real dataset.  相似文献   

11.
In this article, we propose a new control chart called the sum of squares generally weighted moving average (SS-GWMA) control chart to simultaneously detect both the increase and decrease in the mean and/or variability. This new scheme is compared with the sum of squares exponentially weighted moving average (SS-EWMA) control chart. A simulation study is conducted to show that SS-GWMA control charts outperform SS-EWMA charts, in terms of the average run length (ARL), standard deviation of run length (SDRL), and diagnostic abilities. The design of SS-GWMA control charts is also discussed.  相似文献   

12.
Shewhart, cumulative sum (CUSUM), and exponentially weighted moving average (EWMA) control procedures with variable sampling intervals (VSI) have been investigated in recent years for detecting shifts in the process mean. Such procedures have been shown to be more efficient when compared with the corresponding fixed sampling interval (FSI) charts with respect to the average time to signal (ATS) when the average run length (ARL) values of both types of procedures are held equal. Frequent switching between the different sampling intervals can be a complicating factor in the application of control charts with variable sampling intervals. In this article, we propose using a double exponentially weighted moving average control procedure with variable sampling intervals (VSI-DEWMA) for detecting shifts in the process mean. It is shown that the proposed VSI-DEWMA control procedure is more efficient when compared with the corresponding fixed sampling interval FSI-DEWMA chart with respect to the average time to signal (ATS) when the average run length (ARL) values of both types of procedures are held equal. It is also shown that the VSI-DEWMA procedure reduces the average number of switches between the sampling intervals and has similar ATS properties as compared to the VSI-EMTMA control procedure  相似文献   

13.
The generally weighted moving average (GWMA) control chart is an extension model of exponentially weighted moving average (EWMA) control chart. Recently, some approaches have been proposed to modify EWMA charts with fast initial response (FIR) features. We introduce these approaches in GWMA-type charts. Via simulation, various control schemes are designed and then their average run lengths are computed and compared. Based on the overall performance, it is showed that the DGWMA chart is the best choice especially when the shift is moderate, and the GWMA charts provided with additional FIR feature have a good performance only in detecting large shifts during the initial stage.  相似文献   

14.
In this article, we assess the performance of the multivariate exponentially weighted moving average (MEWMA) control chart with estimated parameters while considering the practitioner-to-practitioner variability. We evaluate the chart performance in terms of the in-control average run length (ARL) distributional properties; mainly the average (AARL), the standard deviation (SDARL), and some percentiles. We show through simulations that using estimates in place of the in-control parameters may result in an in-control ARL distribution that almost completely lies below the desired value. We also show that even with the use of larger amounts of historical data, there is still a problem with the excessive false alarm rates. We recommend the use of a recently proposed bootstrap-based design technique for adjusting the control limits. The technique is quite effective in controlling the percentage of short in-control ARLs resulting from the estimation error.  相似文献   

15.
Quality-control charts are widely used to monitor and detect shifts in the process mean and dispersion. Abbasi and Miller [MDEWMA chart: an efficient and robust alternative to monitor process dispersion, J Stat Comput Simul 2013;83:247–268] suggested a robust mean deviation exponentially weighted moving average (MDEWMA) control chart for monitoring process dispersion under simple random sampling. In this study, an improved MDEWMA (IMDEWMA) control chart is proposed under ranked set sampling to monitor process dispersion. Detailed Monte Carlo simulations are performed from symmetric and asymmetric populations to investigate the performances of the proposed and existing control charts in terms of average run length (ARL), median run length and standard deviation of run length. An application to real-life data is also presented to illustrate the use of the IMDEWMA control chart. It is observed that the IMDEWMA control chart indicates a shift in process dispersion substantially quicker than the MDEWMA control chart, while maintaining comparable ARLs when the process is in control.  相似文献   

16.
ABSTRACT

Runs rules are usually used with Shewhart-type charts to enhance the charts' sensitivities toward small and moderate shifts. Abbas et al. in 2011 took it a step further by proposing two runs rules schemes, applied to the exponentially weighted moving average (EWMA) chart and evaluated their average run length (ARL) performances using simulation. They showed that the proposed schemes are superior to the classical EWMA chart and other schemes being investigated. Besides pointing out some erroneous ARL and standard deviation of the run length (SDRL) computations in Abbas et al., this paper presents a Markov chain approach for computing the ARL, percentiles of the run length (RL) distribution and SDRL, for the two runs rules schemes of Abbas et al. Using Markov chain, we also propose two combined runs rules EWMA schemes to quicken the two schemes of Abbas et al. in responding to large shifts. The runs rules (basic and combined rules) EWMA schemes will be compared with some existing control charting methods, where the former charts are shown to prevail.  相似文献   

17.
In this paper, exponentially weighted moving average (EWMA) control charts for multinomial data are developed with a three-level classification scheme. The lower and upper control limits of the proposed EWMA control chart are evaluated using Markov chain approximation. Compared with the three-level Shewhart control chart, numerical results indicate that the proposed EWMA control chart is relatively sensitive to small shifts in a three-level multinomial process. A figure and a table are provided for practitioners to select the value of chart limit coefficient that gives the desired in-control average run length.  相似文献   

18.
In this article we perform a careful investigation of the double exponentially weighted moving average (DEWMA) chart performance for monitoring the process mean. We compare the performance of this chart to the usual EWMA control chart based on zero-state and worst-case average run length (ARL) measures. We also evaluate the signal resistance measure of the DEWMA chart and compare its maximum value to that of the EWMA chart. We show that the superiority of the DEWMA chart over the simpler standard EWMA chart based on zero-state ARL performance disappears when the smoothing constant of the EWMA chart is chosen to give weights to past observations closer to those given by the DEWMA chart. Moreover, our results show that the standard EWMA chart has much better performance than the DEWMA chart in terms of worst-case ARL values, especially when small smoothing constants are used. We also demonstrate using an illustrative example that the DEWMA chart can build up an exceedingly large amount of inertia when used to monitor the process mean.  相似文献   

19.
We propose a new nonparametric multivariate control chart that integrates a novelty score. The proposed control chart uses as its monitoring statistic a hybrid novelty score, calculated based on the distance to local observations as well as on the distance to the convex hull constructed by its neighbors. The control limits of the proposed control chart were established based on a bootstrap method. A rigorous simulation study was conducted to examine the properties of the proposed control chart under various scenarios and compare it with existing multivariate control charts in terms of average run length (ARL) performance. The simulation results showed that the proposed control chart outperformed both the parametric and nonparametric Hotelling's T 2 control charts, especially in nonnormal situations. Moreover, experimental results with real semiconductor data demonstrated the applicability and effectiveness of the proposed control chart. To increase the capability to detect small mean shift, we propose an exponentially weighted hybrid novelty score control chart. Simulation results indicated that exponentially weighted hybrid score charts outperformed the hybrid novelty score based control charts.  相似文献   

20.
ABSTRACT

A generally weighted moving average (GWMA) control chart with fast initial response (FIR) features is addressed to monitor an autoregressive process mean shift. Numerical simulations based on average run length (ARL) show that the GWMA control chart with additional FIR feature requires less time to detect small or moderate shifts than GWMA control chart at low level of autocorrelation; whereas these two control charts perform similarly at high level of autocorrelation. Regardless of any level of autocorrelation, GWMA control charts provided with additional FIR feature have a good performance in detecting large shifts during the initial stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号