首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Finitization transforms a discrete distribution into a distribution with smaller support of specified size. In special cases finitization preserves moments (moments of the order n finitization coincide with those of the parent distribution). We create a moment preserving finitization method for power series distributions by introducing an alternative representation and showing how to finitize members of this new class in a manner that preserves moments of the parent distribution. We provide results on convolutions and a reproductive property for power series distributions that have been finitized in this manner, and show how these finitized distributions accelerate variate generation in simulation.  相似文献   

2.
A necessary and sufficient condition that a continuous, positive random variable follow a gamma distribution is given in terms of any one of its conditional finite moments and an expression involving its failure rate. The results are then used to develop a characterization for a mixture of two gamma distributions. The general results about characterization of a mixture of gamma distributions yield several special cases that have appeared separately in recent literature, including characterization of a single exponential distribution, characterization of a single gamma distribution (in terms of either first or second moments) and a sufficient condition for a mixture of two exponential distributions (in terms of first moments). The condition in this last result is shown to be necessary also. Numerous other cases are possible, using different choices for distribution parameters along with a selection of the mixing parameter, for either individual or mixtures of distributions. Various characterizations can be expressed using higher order moments, too.  相似文献   

3.
《随机性模型》2013,29(2-3):669-693
Abstract

Based on the general concept of randomization, we develop linear-algebraic approximations for continuous probability distributions that involve the exponential of a matrix in their definitions, such as phase types and matrix-exponential distributions. The approximations themselves result in proper probability distributions. For such a global randomization with the Erlang-k distribution, we show that the sequences of true and consistent distribution and density functions converge uniformly on [0, ∞). Furthermore, we study the approximation errors in terms of the power moments and the coefficients of the Taylor series, from which the accuracy of the approximations can be determined apriori. Numerical experiments demonstrate the feasibility of the presented randomization technique – also in comparison with uniformization.  相似文献   

4.
《随机性模型》2013,29(2-3):303-326
Abstract

A number of approximate analysis techniques are based on matching moments of continuous time phase type (PH) distributions. This paper presents an explicit method to compose minimal order continuous time acyclic phase type (APH) distributions with a given first three moments. To this end we also evaluate the bounds for the first three moments of order n APH distributions (APH(n)). The investigations of these properties are based on a basic transformation, which extends the APH(n ? 1) class with an additional phase in order to describe the APH(n) class.  相似文献   

5.
In the present article we study several characteristics of the families of generalized beta- and gamma- generated distributions introduced by Alexander et al. (2011) and Zografos and Balakrishnan (2009), respectively. Simple formulas are established for calculating the failure rate of the members of the aforementioned families by exploiting the failure rate of the parent distribution. In addition, the aging properties of the generalized beta- and gamma-generated distributions are explored in terms of the corresponding aging behavior of the parent family.  相似文献   

6.
A characterization of the uniform distribution based on distributions of spacings is presented which extends the existing result in this direction. Also, a result on the distribution of spacings for distributions close to the uniform one is discussed.  相似文献   

7.
The generalized Charlier series distribution includes the binomial distribution, and the noncentral negative binomial distribution extends the negative binomial distribution. The present article proposes a family of counting distributions, which contains both the generalized Charlier series and extended noncentral negative binomial distributions. Compound and mixture formulations of the proposed distribution are given. The probability mass function is expressible in terms of the confluent hypergeometric function as well as the Gauss hypergeometric function. Recursive formulae for probability mass function have been studied by Panjer, Sundt and Jewell, Schröter, Sundt, and Kitano et al. in the context of insurance risk. This article explores horizontal, vertical, triangular, and diagonal recursions. Recursive formulae as well as exact expressions for descending factorial moments are studied. The proposed distribution allows overdispersion or underdispersion relative to a Poisson distribution. An illustrative example of data fitting is given.  相似文献   

8.
This article discusses a general approach to finding the moments of two classes of multivariate discrete distributions, which include those widely used in applied and theoretical statistics. The two classes of multivariate discrete distributions are the multivariate generalized power series distributions (GPSD) and the unified multivariate hypergeometric (UMH) Distributions. The results of Link (1981) follow as special cases.  相似文献   

9.
An extended version of the compound Poisson distribution is obtained by compounding the Poisson distribution with the generalized Lindley distribution. Estimation of the parameters is discussed using the method of moments and maximum likelihood estimators. Examples are given of the fitting of this distribution to data, and the fit is compared with that obtained using other distributions.  相似文献   

10.
Abstract

We introduce a new family of distributions using truncated discrete Linnik distribution. This family is a rich family of distributions which includes many important families of distributions such as Marshall–Olkin family of distributions, family of distributions generated through truncated negative binomial distribution, family of distributions generated through truncated discrete Mittag–Leffler distribution etc. Some properties of the new family of distributions are derived. A particular case of the family, a five parameter generalization of Weibull distribution, namely discrete Linnik Weibull distribution is given special attention. This distribution is a generalization of many distributions, such as extended exponentiated Weibull, exponentiated Weibull, Weibull truncated negative binomial, generalized exponential truncated negative binomial, Marshall-Olkin extended Weibull, Marshall–Olkin generalized exponential, exponential truncated negative binomial, Marshall–Olkin exponential and generalized exponential. The shape properties, moments, median, distribution of order statistics, stochastic ordering and stress–strength properties of the new generalized Weibull distribution are derived. The unknown parameters of the distribution are estimated using maximum likelihood method. The discrete Linnik Weibull distribution is fitted to a survival time data set and it is shown that the distribution is more appropriate than other competitive models.  相似文献   

11.
The distributions generated by the Gaussian hypergeometric function compose a tetraparametric family that includes many of the most common discrete distributions in the literature. In this article, probability aspects related to the whole family are reviewed and methods of estimation for fitting them to real data are developed. Several applied examples are also provided to illustrate the procedures and compare the methods of estimation.  相似文献   

12.
A two-parameter class of discrete distributions, Abel series distributions, generated by expanding a suitable pa,rametric function into a series of Abel polynomials is discussed. An Abel series distribution occurs in fluctuations of sample functions of stochastic processes and has applications in insurance risk, queueing, dam and storage processes. The probability generating function and the factorial moments of the Abel series distributions are obtained in closed forms. It is pointed out that the name of the generalized Poisson distribution of Consul and Jain is justified by the form of its generating function. Finally it is shown that this generalized Poisson distribution is the only member of the Abel series distributions which is closed under convolution.  相似文献   

13.
A characterization of a symmetric probability density function based on certain properties of its associated skewed family is presented. This characterization is then applied to various well-known distributions.  相似文献   

14.
15.
In this article, a technique based on the sample correlation coefficient to construct goodness-of-fit tests for max-stable distributions with unknown location and scale parameters and finite second moment is proposed. Specific details to test for the Gumbel distribution are given, including critical values for small sample sizes as well as approximate critical values for larger sample sizes by using normal quantiles. A comparison by Monte Carlo simulation shows that the proposed test for the Gumbel hypothesis is substantially more powerful than some other known tests against some alternative distributions with positive skewness coefficient.  相似文献   

16.
Empirical likelihood ratio confidence regions based on the chi-square calibration suffer from an undercoverage problem in that their actual coverage levels tend to be lower than the nominal levels. The finite sample distribution of the empirical log-likelihood ratio is recognized to have a mixture structure with a continuous component on [0, + ∞) and a point mass at + ∞. The undercoverage problem of the Chi-square calibration is partly due to its use of the continuous Chi-square distribution to approximate the mixture distribution of the empirical log-likelihood ratio. In this article, we propose two new methods of calibration which will take advantage of the mixture structure; we construct two new mixture distributions by using the F and chi-square distributions and use these to approximate the mixture distributions of the empirical log-likelihood ratio. The new methods of calibration are asymptotically equivalent to the chi-square calibration. But the new methods, in particular the F mixture based method, can be substantially more accurate than the chi-square calibration for small and moderately large sample sizes. The new methods are also as easy to use as the chi-square calibration.  相似文献   

17.
《统计学通讯:理论与方法》2012,41(16-17):2864-2878
We describe diverse stochastic inference problems whose solution essentially depends on the moment determinacy of some distributions involved. For a variety of stochastic models we ask questions such as “how to identify a distribution if knowing its moments?” “how asymmetric can be a distribution with zero odd order moments?” “is any mixture model identifiable?” For specific models we provide answers, motivating arguments, and illustrations. Some challenging open questions are outlined.  相似文献   

18.
In this article, a method is proposed to get the limiting distributions and asymptotic properties of estimators based on the minimum and/or maximum of a given srs of a truncated distribution. Following a common outline, a review is carried out by considering different kinds of truncated distributions, some new results are also developed.  相似文献   

19.
In this article, we give a new family of univariate distributions generated by the Logistic random variable. A special case of this family is the Logistic-Uniform distribution. We show that the Logistic-Uniform distribution provides great flexibility in modeling for symmetric, negatively and positively skewed, bathtub-shaped, “J”-shaped, and reverse “J”-shaped distributions. We discuss simulation issues, estimation by the methods of moments, maximum likelihood, and the new method of minimum spacing distance estimator. We also derive Shannon entropy and asymptotic distribution of the extreme order statistics of this distribution. The new distribution can be used effectively in the analysis of survival data since the hazard function of the distribution can be “J,” bathtub, and concave-convex shaped. The usefulness of the new distribution is illustrated through two real datasets by showing that it is more flexible in analyzing the data than the Beta Generalized-Exponential, Beta-Exponential, Beta-Normal, Beta-Laplace, Beta Generalized half-Normal, β-Birnbaum-Saunders, Gamma-Uniform, Beta Generalized Pareto, Beta Modified Weibull, Beta-Pareto, Generalized Modified Weibull, Beta-Weibull, and Modified-Weibull distributions.  相似文献   

20.
Multivariate extreme value statistical analysis is concerned with observations on several variables which are thought to possess some degree of tail dependence. The main approaches to inference for multivariate extremes consist in approximating either the distribution of block component‐wise maxima or the distribution of the exceedances over a high threshold. Although the expressions of the asymptotic density functions of these distributions may be characterized, they cannot be computed in general. In this paper, we study the case where the spectral random vector of the multivariate max‐stable distribution has known conditional distributions. The asymptotic density functions of the multivariate extreme value distributions may then be written through univariate integrals that are easily computed or simulated. The asymptotic properties of two likelihood estimators are presented, and the utility of the method is examined via simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号