首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Inflated data are prevalent in many situations and a variety of inflated models with extensions have been derived to fit data with excessive counts of some particular responses. The family of information criteria (IC) has been used to compare the fit of models for selection purposes. Yet despite the common use in statistical applications, there are not too many studies evaluating the performance of IC in inflated models. In this study, we studied the performance of IC for data with dual-inflated data. The new zero- and K-inflated Poisson (ZKIP) regression model and conventional inflated models including Poisson regression and zero-inflated Poisson (ZIP) regression were fitted for dual-inflated data and the performance of IC were compared. The effect of sample sizes and the proportions of inflated observations towards selection performance were also examined. The results suggest that the Bayesian information criterion (BIC) and consistent Akaike information criterion (CAIC) are more accurate than the Akaike information criterion (AIC) in terms of model selection when the true model is simple (i.e. Poisson regression (POI)). For more complex models, such as ZIP and ZKIP, the AIC was consistently better than the BIC and CAIC, although it did not reach high levels of accuracy when sample size and the proportion of zero observations were small. The AIC tended to over-fit the data for the POI, whereas the BIC and CAIC tended to under-parameterize the data for ZIP and ZKIP. Therefore, it is desirable to study other model selection criteria for dual-inflated data with small sample size.  相似文献   

2.
A regression simulation study investigates the behaviour of ICOMP, AIC, and BIC under various collinearity-, sample size-, and residual variance-levels. When the variation in the design matrix is large, as the collinearity levels in the design matrix increased, the agreement percentages for all of the information criteria decreased monotonically and that ICOMP agreed with the Kullback Leibler model more often. As the residual variance increases, the agreement percentages of all of the information criteria decreases. However, as the sample size increased the agreement percentages of all information criteria increased. When the variation in the design matrix is low and the collinearity is low, as the residual variance increases, the agreement percentages for all of the information criteria decreases monotonically such that ICOMP agreed more often with Kullback Leibler model than both AIC and BIC.  相似文献   

3.
Model selection strategies play an important, if not explicit, role in quantitative research. The inferential properties of these strategies are largely unknown, therefore, there is little basis for recommending (or avoiding) any particular set of strategies. In this paper, we evaluate several commonly used model selection procedures [Bayesian information criterion (BIC), adjusted R 2, Mallows’ C p, Akaike information criteria (AIC), AICc, and stepwise regression] using Monte-Carlo simulation of model selection when the true data generating processes (DGP) are known.

We find that the ability of these selection procedures to include important variables and exclude irrelevant variables increases with the size of the sample and decreases with the amount of noise in the model. None of the model selection procedures do well in small samples, even when the true DGP is largely deterministic; thus, data mining in small samples should be avoided entirely. Instead, the implicit uncertainty in model specification should be explicitly discussed. In large samples, BIC is better than the other procedures at correctly identifying most of the generating processes we simulated, and stepwise does almost as well. In the absence of strong theory, both BIC and stepwise appear to be reasonable model selection strategies in large samples. Under the conditions simulated, adjusted R 2, Mallows’ C p AIC, and AICc are clearly inferior and should be avoided.  相似文献   


4.
This paper proposes an adaptive model selection criterion with a data-driven penalty term. We treat model selection as an equality constrained minimization problem and develop an adaptive model selection procedure based on the Lagrange optimization method. In contrast to Akaike's information criterion (AIC), Bayesian information criterion (BIC) and most other existing criteria, this new criterion is to minimize the model size and take a measure of lack-of-fit as an adaptive penalty. Both theoretical results and simulations illustrate the power of this criterion with respect to consistency and pointwise asymptotic loss efficiency in the parametric and nonparametric cases.  相似文献   

5.
Stock & Watson (1999) consider the relative quality of different univariate forecasting techniques. This paper extends their study on forecasting practice, comparing the forecasting performance of two popular model selection procedures, the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). This paper considers several topics: how AIC and BIC choose lags in autoregressive models on actual series, how models so selected forecast relative to an AR(4) model, the effect of using a maximum lag on model selection, and the forecasting performance of combining AR(4), AIC, and BIC models with an equal weight.  相似文献   

6.
In medical studies, Cox proportional hazards model is a commonly used method to deal with the right-censored survival data accompanied by many explanatory covariates. In practice, the Akaike's information criterion (AIC) or the Bayesian information criterion (BIC) is usually used to select an appropriate subset of covariates. It is well known that neither the AIC criterion nor the BIC criterion dominates for all situations. In this paper, we propose an adaptive-Cox model averaging procedure to get a more robust hazard estimator. First, by applying AIC and BIC criteria to perturbed datasets, we obtain two model averaging (MA) estimated survival curves, called AIC-MA and BIC-MA. Then, based on Kullback–Leibler loss, a better estimate of survival curve between AIC-MA and BIC-MA is chosen, which results in an adaptive-Cox estimate of survival curve. Simulation results show the superiority of our approach and an application of the proposed method is also presented by analyzing the German Breast Cancer Study dataset.  相似文献   

7.
Point process models are a natural approach for modelling data that arise as point events. In the case of Poisson counts, these may be fitted easily as a weighted Poisson regression. Point processes lack the notion of sample size. This is problematic for model selection, because various classical criteria such as the Bayesian information criterion (BIC) are a function of the sample size, n, and are derived in an asymptotic framework where n tends to infinity. In this paper, we develop an asymptotic result for Poisson point process models in which the observed number of point events, m, plays the role that sample size does in the classical regression context. Following from this result, we derive a version of BIC for point process models, and when fitted via penalised likelihood, conditions for the LASSO penalty that ensure consistency in estimation and the oracle property. We discuss challenges extending these results to the wider class of Gibbs models, of which the Poisson point process model is a special case.  相似文献   

8.
Model selection aims to find the best model. Most of the usual criteria are based on goodness of fit and parsimony and aim to maximize a transformed version of likelihood. The situation is less clear when two models are equivalent: are they close to the unknown true model or are they far from it? Based on simulations, we study the results of Vuong's test, Cox's test, AIC and BIC and the ability of these four tests to discriminate between models.  相似文献   

9.
In this paper, we use the Bayesian method in the application of hypothesis testing and model selection to determine the order of a Markov chain. The criteria used are based on Bayes factors with noninformative priors. Com¬parisons with the commonly used AIC and BIC criteria are made through an example and computer simulations. The results show that the proposed method is better than the AIC and BIC criteria, especially for Markov chains with higher orders and larger state spaces.  相似文献   

10.
SUMMARY We compare properties of parameter estimators under Akaike information criterion (AIC) and 'consistent' AIC (CAIC) model selection in a nested sequence of open population capture-recapture models. These models consist of product multinomials, where the cell probabilities are parameterized in terms of survival ( ) and capture ( p ) i i probabilities for each time interval i . The sequence of models is derived from 'treatment' effects that might be (1) absent, model H ; (2) only acute, model H ; or (3) acute and 0 2 p chronic, lasting several time intervals, model H . Using a 35 factorial design, 1000 3 repetitions were simulated for each of 243 cases. The true number of parameters ranged from 7 to 42, and the sample size ranged from approximately 470 to 55 000 per case. We focus on the quality of the inference about the model parameters and model structure that results from the two selection criteria. We use achieved confidence interval coverage as an integrating metric to judge what constitutes a 'properly parsimonious' model, and contrast the performance of these two model selection criteria for a wide range of models, sample sizes, parameter values and study interval lengths. AIC selection resulted in models in which the parameters were estimated with relatively little bias. However, these models exhibited asymptotic sampling variances that were somewhat too small, and achieved confidence interval coverage that was somewhat below the nominal level. In contrast, CAIC-selected models were too simple, the parameter estimators were often substantially biased, the asymptotic sampling variances were substantially too small and the achieved coverage was often substantially below the nominal level. An example case illustrates a pattern: with 20 capture occasions, 300 previously unmarked animals are released at each occasion, and the survival and capture probabilities in the control group on each occasion were 0.9 and 0.8 respectively using model H . There was a strong acute treatment effect 3 on the first survival ( ) and first capture probability ( p ), and smaller, chronic effects 1 2 on the second and third survival probabilities ( and ) as well as on the second capture 2 3 probability ( p ); the sample size for each repetition was approximately 55 000. CAIC 3 selection led to a model with exactly these effects in only nine of the 1000 repetitions, compared with 467 times under AIC selection. Under CAIC selection, even the two acute effects were detected only 555 times, compared with 998 for AIC selection. AIC selection exhibited a balance between underfitted and overfitted models (270 versus 263), while CAIC tended strongly to select underfitted models. CAIC-selected models were overly parsimonious and poor as a basis for statistical inferences about important model parameters or structure. We recommend the use of the AIC and not the CAIC for analysis and inference from capture-recapture data sets.  相似文献   

11.
Reply     
ABSTRACT

In the class of stochastic volatility (SV) models, leverage effects are typically specified through the direct correlation between the innovations in both returns and volatility, resulting in the dynamic leverage (DL) model. Recently, two asymmetric SV models based on threshold effects have been proposed in the literature. As such models consider only the sign of the previous return and neglect its magnitude, this paper proposes a dynamic asymmetric leverage (DAL) model that accommodates the direct correlation as well as the sign and magnitude of the threshold effects. A special case of the DAL model with zero direct correlation between the innovations is the asymmetric leverage (AL) model. The dynamic asymmetric leverage models are estimated by the Monte Carlo likelihood (MCL) method. Monte Carlo experiments are presented to examine the finite sample properties of the estimator. For a sample size of T = 2000 with 500 replications, the sample means, standard deviations, and root mean squared errors of the MCL estimators indicate only a small finite sample bias. The empirical estimates for S&;P 500 and TOPIX financial returns, and USD/AUD and YEN/USD exchange rates, indicate that the DAL class, including the DL and AL models, is generally superior to threshold SV models with respect to AIC and BIC, with AL typically providing the best fit to the data.  相似文献   

12.
Model selection criteria are frequently developed by constructing estimators of discrepancy measures that assess the disparity between the 'true' model and a fitted approximating model. The Akaike information criterion (AIC) and its variants result from utilizing Kullback's directed divergence as the targeted discrepancy. The directed divergence is an asymmetric measure of separation between two statistical models, meaning that an alternative directed divergence can be obtained by reversing the roles of the two models in the definition of the measure. The sum of the two directed divergences is Kullback's symmetric divergence. In the framework of linear models, a comparison of the two directed divergences reveals an important distinction between the measures. When used to evaluate fitted approximating models that are improperly specified, the directed divergence which serves as the basis for AIC is more sensitive towards detecting overfitted models, whereas its counterpart is more sensitive towards detecting underfitted models. Since the symmetric divergence combines the information in both measures, it functions as a gauge of model disparity which is arguably more balanced than either of its individual components. With this motivation, the paper proposes a new class of criteria for linear model selection based on targeting the symmetric divergence. The criteria can be regarded as analogues of AIC and two of its variants: 'corrected' AIC or AICc and 'modified' AIC or MAIC. The paper examines the selection tendencies of the new criteria in a simulation study and the results indicate that they perform favourably when compared to their AIC analogues.  相似文献   

13.
In this article, we propose a new empirical information criterion (EIC) for model selection which penalizes the likelihood of the data by a non-linear function of the number of parameters in the model. It is designed to be used where there are a large number of time series to be forecast. However, a bootstrap version of the EIC can be used where there is a single time series to be forecast. The EIC provides a data-driven model selection tool that can be tuned to the particular forecasting task.

We compare the EIC with other model selection criteria including Akaike’s information criterion (AIC) and Schwarz’s Bayesian information criterion (BIC). The comparisons show that for the M3 forecasting competition data, the EIC outperforms both the AIC and BIC, particularly for longer forecast horizons. We also compare the criteria on simulated data and find that the EIC does better than existing criteria in that case also.  相似文献   

14.
In a recent volume of this journal, Holden [Testing the normality assumption in the Tobit Model, J. Appl. Stat. 31 (2004) pp. 521–532] presents Monte Carlo evidence comparing several tests for departures from normality in the Tobit Model. This study adds to the work of Holden by considering another test, and several information criteria, for detecting departures from normality in the Tobit Model. The test given here is a modified likelihood ratio statistic based on a partially adaptive estimator of the Censored Regression Model using the approach of Caudill [A partially adaptive estimator for the Censored Regression Model based on a mixture of normal distributions, Working Paper, Department of Economics, Auburn University, 2007]. The information criteria examined include the Akaike’s Information Criterion (AIC), the Consistent AIC (CAIC), the Bayesian information criterion (BIC), and the Akaike’s BIC (ABIC). In terms of fewest ‘rejections’ of a true null, the best performance is exhibited by the CAIC and the BIC, although, like some of the statistics examined by Holden, there are computational difficulties with each.  相似文献   

15.
Monte Carlo experiments are conducted to compare the Bayesian and sample theory model selection criteria in choosing the univariate probit and logit models. We use five criteria: the deviance information criterion (DIC), predictive deviance information criterion (PDIC), Akaike information criterion (AIC), weighted, and unweighted sums of squared errors. The first two criteria are Bayesian while the others are sample theory criteria. The results show that if data are balanced none of the model selection criteria considered in this article can distinguish the probit and logit models. If data are unbalanced and the sample size is large the DIC and AIC choose the correct models better than the other criteria. We show that if unbalanced binary data are generated by a leptokurtic distribution the logit model is preferred over the probit model. The probit model is preferred if unbalanced data are generated by a platykurtic distribution. We apply the model selection criteria to the probit and logit models that link the ups and downs of the returns on S&P500 to the crude oil price.  相似文献   

16.
内容提要:向量自回归模型是多元时间序列分析中最常用的方法之一。在建立模型的过程中模型选择是非常重要的一个环节,如果候选模型不是很多时,可以通过比较每个模型的准则值如AIC、AICc、BIC或HQ进行模型选择。可是,当存在大量候选模型时,我们无法一一比较每个模型的准则值。为了解决这个问题,本文提出一个基于吉伯斯样本生成器的向量自回归模型选择方法,结果表明应用该方法能够从大量候选模型中准确、高效地确认准则值最小的模型。  相似文献   

17.
This paper investigates, by means of Monte Carlo simulation, the effects of different choices of order for autoregressive approximation on the fully efficient parameter estimates for autoregressive moving average models. Four order selection criteria, AIC, BIC, HQ and PKK, were compared and different model structures with varying sample sizes were used to contrast the performance of the criteria. Some asymptotic results which provide a useful guide for assessing the performance of these criteria are presented. The results of this comparison show that there are marked differences in the accuracy implied using these alternative criteria in small sample situations and that it is preferable to apply BIC criterion, which leads to greater precision of Gaussian likelihood estimates, in such cases. Implications of the findings of this study for the estimation of time series models are highlighted.  相似文献   

18.
Autoregressive model is a popular method for analysing the time dependent data, where selection of order parameter is imperative. Two commonly used selection criteria are the Akaike information criterion (AIC) and the Bayesian information criterion (BIC), which are known to suffer the potential problems regarding overfit and underfit, respectively. To our knowledge, there does not exist a criterion in the literature that can satisfactorily perform under various situations. Therefore, in this paper, we focus on forecasting the future values of an observed time series and propose an adaptive idea to combine the advantages of AIC and BIC but to mitigate their weaknesses based on the concept of generalized degrees of freedom. Instead of applying a fixed criterion to select the order parameter, we propose an approximately unbiased estimator of mean squared prediction errors based on a data perturbation technique for fairly comparing between AIC and BIC. Then use the selected criterion to determine the final order parameter. Some numerical experiments are performed to show the superiority of the proposed method and a real data set of the retail price index of China from 1952 to 2008 is also applied for illustration.  相似文献   

19.
The goal of the current paper is to compare consistent and inconsistent model selection criteria by looking at their convergence rates (to be defined in the first section). The prototypes of the two types of criteria are the AIC and BIC criterion respectively. For linear regression models with normally distributed errors, we show that the convergence rates for AIC and BIC are 0(n-1) and 0((n log n)-1/2) respectively. When the error distributions are unknown, the two criteria become indistinguishable, all having convergence rate O(n-1/2). We also argue that the BIC criterion has nearly optimal convergence rate. The results partially justified some of the controversial simulation results in which inconsistent criteria seem to outperform consistent ones.  相似文献   

20.
Rong Zhu  Xinyu Zhang 《Statistics》2018,52(1):205-227
The theories and applications of model averaging have been developed comprehensively in the past two decades. In this paper, we consider model averaging for multivariate multiple regression models. In order to make use of the correlation information of the dependent variables sufficiently, we propose a model averaging method based on Mahalanobis distance which is related to the correlation of the dependent variables. We prove the asymptotic optimality of the resulting Mahalanobis Mallows model averaging (MMMA) estimators under certain assumptions. In the simulation study, we show that the proposed MMMA estimators compare favourably with model averaging estimators based on AIC and BIC weights and the Mallows model averaging estimators from the single dependent variable regression models. We further apply our method to the real data on urbanization rate and the proportion of non-agricultural population in ethnic minority areas of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号