首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparison with a standard is a general multiple comparison problem, where each system is required to be compared with a single system, referred to as a ‘standard’, as well as with other alternative systems. Screening procedures specially designed to be used for comparison with a standard have been proposed to find a subset that includes all the systems better than the standard in terms of the expected performance. Selection procedures are derived to determine the best system among a number of systems that are better than the standard, or to select the standard when it is equal to or better than the other alternatives. We develop new procedures for screening and selection through the use of two variance reduction techniques, common random numbers and control variates, which are particularly useful in the context of simulation experiments. Empirical results and a realistic example are also provided to compare our procedures with the existing ones.  相似文献   

2.
This paper studies a sequential procedure R for selecting a random size subset that contains the multinomial cell which has the smallest cell probability. The stopping rule of the proposed procedure R is the composite of the stopping rules of curtailed sampling, inverse sampling, and the Ramey-Alam sampling. A reslut on the worst configuration is shown and it is employed in computing the procedure parameters that guarantee certain probability requirements. Tables of these procedure parameters, the corresponding probability of correct selection, the expected sample size, and the expected subset size are given for comparison purpose.  相似文献   

3.
A subset selection procedure is developed for selecting a subset containing the multinomial population that has the highest value of a certain linear combination of the multinomial cell probabilities; such population is called the ‘best’. The multivariate normal large sample approximation to the multinomial distribution is used to derive expressions for the probability of a correct selection, and for the threshold constant involved in the procedure. The procedure guarantees that the probability of a correct selection is at least at a pre-assigned level. The proposed procedure is an extension of Gupta and Sobel's [14] selection procedure for binomials and of Bakir's [2] restrictive selection procedure for multinomials. One illustration of the procedure concerns population income mobility in four countries: Peru, Russia, South Africa and the USA. Analysis indicates that Russia and Peru fall in the selected subset containing the best population with respect to income mobility from poverty to a higher-income status. The procedure is also applied to data concerning grade distribution for students in a certain freshman class.  相似文献   

4.
A procedure for selecting a Poisson population with smallest mean is considered using an indifference zone approach. The objective is to determine the smallest sample size n required from k ≥ 2 populations in order to attain the desired probability of correct selection. Since the means procedure is not consistent with respect to the difference or ratio alone, two distance measures are used simultaneously to overcome the difficulty in obtaining the smallest probability of correct selection that is greater than some specified limit. The constants required to determine n are computed and tabulated. The asymptotic results are derived using a normal approximation. A comparison with the exact results indicates that the proposed approximation works well. Only in the extreme cases small increases in n are observed. An example of industrial accident data is used to illustrate this procedure.  相似文献   

5.
Frequently, contingency tables are generated in a multinomial sampling. Multinomial probabilities are then organized in a table assigning probabilities to each cell. A probability table can be viewed as an element in the simplex. The Aitchison geometry of the simplex identifies independent probability tables as a linear subspace. An important consequence is that, given a probability table, the nearest independent table is obtained by orthogonal projection onto the independent subspace. The nearest independent table is identified as that obtained by the product of geometric marginals, which do not coincide with the standard marginals, except in the independent case. The original probability table is decomposed into orthogonal tables, the independent and the interaction tables. The underlying model is log-linear, and a procedure to test independence of a contingency table, based on a multinomial simulation, is developed. Its performance is studied on an illustrative example.  相似文献   

6.
The two well-known and widely used multinomial selection procedures Bechhofor, Elmaghraby, and Morse (BEM) and all vector comparison (AVC) are critically compared in applications related to simulation optimization problems.

Two configurations of population probability distributions in which the best system has the greatest probability p i of yielding the largest value of the performance measure and has or does not have the largest expected performance measure were studied.

The numbers achieved by our simulations clearly show that none of the studied procedures outperform the other in all situations. The user must take into consideration the complexity of the simulations and the performance measure probability distribution properties when deciding which procedure to employ.

An important discovery was that the AVC does not work in populations in which the best system has the greatest probability p i of yielding the largest value of the performance measure but does not have the largest expected performance measure.  相似文献   

7.
We compare the selection procedure of Levin and Robbins [1981. Selecting the highest probability in binomial or multinomial trials. Proc. Nat. Acad. Sci. USA 78, 4663–4666.] with the procedure of Paulson [1994. Sequential procedures for selecting the best one of k Koopman–Darmois populations. Sequential Analysis 13, 207–220.] to identify the best of several binomial populations with sequential elimination of unlikely candidates. We point out situations in which the Levin–Robbins procedure dominates the Paulson procedure in terms of the duration of the experiment, the expected total number of observations, and the expected number of failures. Because the Levin–Robbins procedure is also easier to implement than Paulson's procedure and gives a tighter guarantee for the probability of correct selection, we conclude that it holds a competitive edge over Paulson's procedure.  相似文献   

8.
The latent class model or multivariate multinomial mixture is a powerful approach for clustering categorical data. It uses a conditional independence assumption given the latent class to which a statistical unit is belonging. In this paper, we exploit the fact that a fully Bayesian analysis with Jeffreys non-informative prior distributions does not involve technical difficulty to propose an exact expression of the integrated complete-data likelihood, which is known as being a meaningful model selection criterion in a clustering perspective. Similarly, a Monte Carlo approximation of the integrated observed-data likelihood can be obtained in two steps: an exact integration over the parameters is followed by an approximation of the sum over all possible partitions through an importance sampling strategy. Then, the exact and the approximate criteria experimentally compete, respectively, with their standard asymptotic BIC approximations for choosing the number of mixture components. Numerical experiments on simulated data and a biological example highlight that asymptotic criteria are usually dramatically more conservative than the non-asymptotic presented criteria, not only for moderate sample sizes as expected but also for quite large sample sizes. This research highlights that asymptotic standard criteria could often fail to select some interesting structures present in the data.  相似文献   

9.
The method of Gupta (1956, 1965) was developed to select a subset from k normal populations that contains the best populations with given probability. This paper shows a duality between the general goal of selecting a subset for the best population and many-one tests. A population should be regarded as ‘candidate’ for the best population and thus retained in the subset if the samples from the other populations are not significantly better. Based on this ‘idea’ a general selection procedure is proposed using many-one tests for the comparison of each population against the remaining ones.  相似文献   

10.
We propose a new procedure for the multinomial selection problem to solve a real problem of any modern Air Force: the elaboration of better air-to-air tactics for Beyond Visual Range air-to-air combat that maximize its aircraft survival probability H(θ, ω), as well as enemy aircraft downing probability G(θ, ω). In this study, using a low-resolution simulator with generic parameters for the aircraft and missiles, we could increase an average success rate of 16.69% and 16.23% for H(θ, ω) and G(θ, ω), respectively, to an average success rate of 76.85% and 79.30%. We can assure with low probability of being wrong that the selected tactic has greater probability of yielding greater success rates in both H(θ, ω) and G(θ, ω) than any simulated tactic.  相似文献   

11.
This paper derives an algorithm for computing rectangular multinomial probabilities. It thus provides a method for exact computation of the multinomial cumulative distribution function. One application of rectangular multinomial probabilities comes in determining how large a sample must be in order to have a high probability of being representative in a certain nonparametric sense.  相似文献   

12.
We propose a new type of stochastic ordering which imposes a monotone tendency in differences between one multinomial probability and a known standard one. An estimation procedure is proposed for the constrained maximum likelihood estimate, and then the asymptotic null distribution is derived for the likelihood ratio test statistic for testing equality of two multinomial distributions against the new stochastic ordering. An alternative test is also discussed based on Neyman modified minimum chi-square estimator. These tests are illustrated with a set of heart disease data.  相似文献   

13.
Suboptimal Bayesian sequential methods for choosing the best (i.e. largest probability) multinomial cell are considered and their performance is studied using Monte Carlo simulation. Performance characteristics, such as the probability of correct selection and some other associated with the sample size distribution, are evaluated assuming a maximum sample size. Single observation sequential rules as well as rules, where groups of observations are taken, and fixed sample size rules are discussed.  相似文献   

14.
A class of closed inverse sampling procedures R(n,m) for selecting the multinomial cell with the largest probability is considered; here n is the maximum sample size that an experimenter can take and m is the maximum frequency that a multinomial cell can have. The proposed procedures R(n,m) achieve the same probability of a correct selection as do the corresponding fixed sample size procedures and the curtailed sequential procedures when m is at least n/2. A monotonicity property on the probability of a correct selection is proved and it is used to find the least favorable configurations and to tabulate the necessary probabilities of a correct selection and corresponding expected sample sizes  相似文献   

15.
In this article, comparison of several population proportions using multiple decision approach is studied. The probability of the order of the sample proportions matching with the order of the population proportions is being controlled. A related multiple comparison procedure with a control is also discussed. For ranking the proportions in multinomial distribution, the simultaneous confidence interval is constructed and used for the ranking. Some examples are used to illustrate the multiple decision procedures discussed in this paper.  相似文献   

16.
The classical unconditional exact p-value test can be used to compare two multinomial distributions with small samples. This general hypothesis requires parameter estimation under the null which makes the test severely conservative. Similar property has been observed for Fisher's exact test with Barnard and Boschloo providing distinct adjustments that produce more powerful testing approaches. In this study, we develop a novel adjustment for the conservativeness of the unconditional multinomial exact p-value test that produces nominal type I error rate and increased power in comparison to all alternative approaches. We used a large simulation study to empirically estimate the 5th percentiles of the distributions of the p-values of the exact test over a range of scenarios and implemented a regression model to predict the values for two-sample multinomial settings. Our results show that the new test is uniformly more powerful than Fisher's, Barnard's, and Boschloo's tests with gains in power as large as several hundred percent in certain scenarios. Lastly, we provide a real-life data example where the unadjusted unconditional exact test wrongly fails to reject the null hypothesis and the corrected unconditional exact test rejects the null appropriately.  相似文献   

17.
Panchapakesan's procedure is considered for the problem of selectinga subset containing the most probable multinomial event. We use the type-2 Dirichlet integral to express the probability of a correct selection and propose a much simpler proof for the worst configuration. We also show that the supremum of the expected subset size occurs at the equal configuration.  相似文献   

18.
A crucial problem in kernel density estimates of a probability density function is the selection of the bandwidth. The aim of this study is to propose a procedure for selecting both fixed and variable bandwidths. The present study also addresses the question of how different variable bandwidth kernel estimators perform in comparison with each other and to the fixed type of bandwidth estimators. The appropriate algorithms for implementation of the proposed method are given along with a numerical simulation.The numerical results serve as a guide to determine which bandwidth selection method is most appropriate for a given type of estimator over a vide class of probability density functions, Also, we obtain a numerical comparison of the different types of kernel estimators under various types of bandwidths.  相似文献   

19.
Abstract

In this article, we study the variable selection and estimation for linear regression models with missing covariates. The proposed estimation method is almost as efficient as the popular least-squares-based estimation method for normal random errors and empirically shown to be much more efficient and robust with respect to heavy tailed errors or outliers in the responses and covariates. To achieve sparsity, a variable selection procedure based on SCAD is proposed to conduct estimation and variable selection simultaneously. The procedure is shown to possess the oracle property. To deal with the covariates missing, we consider the inverse probability weighted estimators for the linear model when the selection probability is known or unknown. It is shown that the estimator by using estimated selection probability has a smaller asymptotic variance than that with true selection probability, thus is more efficient. Therefore, the important Horvitz-Thompson property is verified for penalized rank estimator with the covariates missing in the linear model. Some numerical examples are provided to demonstrate the performance of the estimators.  相似文献   

20.
A large sample approximation of the least favorable configuration for a fixed sample size selection procedure for negative binomial populations is proposed. A normal approximation of the selection procedure is also presented. Optimal sample sizes required to be drawn from each population and the bounds for the sample sizes are tabulated. Sample sizes obtained using the approximate least favorable configuration are compared with those obtained using the exact least favorable configuration. Alternate form of the normal approximation to the probability of correct selection is also presented. The relation between the required sample size and the number of populations involved is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号