首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT. Aalen (1995) introduced phase type distributions based on Markov processes for modelling disease progression in survival analysis. For tractability and to maintain the Markov property, these use exponential waiting times for transitions between states. This article extends the work of Aalen (1995) by generalizing these models to semi-Markov processes with non-exponential waiting times. The generalization allows more realistic modelling of the stages of a disease where the Markov property and exponential waiting times may not hold. Flowgraph models are introduced to provide a closed form for the distributions in situations involving non-exponential waiting times. Flowgraph models work where traditional methods of stochastic processes are intractable. Saddlepoint approximations are used in the analysis. Together, generalized phase type distributions, flowgraphs, and saddlepoint approximations create exciting and innovative prospects for the analysis of survival data.  相似文献   

2.
In this paper we outline and illustrate an easy-to-use inference procedure for directly calculating the approximate bootstrap percentile-type p-value for the one-sample median test, i.e. we calculate the bootstrap p -value without resampling, by using a fractional order statistics based approach. The method parallels earlier work on fractionalorder-statistics-based non-parametric bootstrap percentile-type confidence intervals for quantiles. Monte Carlo simulation studies are performed, which illustrate that the fractional-order-statistics-based approach to the one-sample median test has accurate type I error control for small samples over a wide range of distributions; is easy to calculate; and is preferable to the sign test in terms of type I error control and power. Furthermore, the fractional-order-statistics-based median test is easily generalized to testing that any quantile has some hypothesized value; for example, tests for the upper or lower quartile may be performed using the same framework.  相似文献   

3.
In this article, we develop new bootstrap-based inference for noncausal autoregressions with heavy-tailed innovations. This class of models is widely used for modeling bubbles and explosive dynamics in economic and financial time series. In the noncausal, heavy-tail framework, a major drawback of asymptotic inference is that it is not feasible in practice as the relevant limiting distributions depend crucially on the (unknown) decay rate of the tails of the distribution of the innovations. In addition, even in the unrealistic case where the tail behavior is known, asymptotic inference may suffer from small-sample issues. To overcome these difficulties, we propose bootstrap inference procedures using parameter estimates obtained with the null hypothesis imposed (the so-called restricted bootstrap). We discuss three different choices of bootstrap innovations: wild bootstrap, based on Rademacher errors; permutation bootstrap; a combination of the two (“permutation wild bootstrap”). Crucially, implementation of these bootstraps do not require any a priori knowledge about the distribution of the innovations, such as the tail index or the convergence rates of the estimators. We establish sufficient conditions ensuring that, under the null hypothesis, the bootstrap statistics estimate consistently particular conditionaldistributions of the original statistics. In particular, we show that validity of the permutation bootstrap holds without any restrictions on the distribution of the innovations, while the permutation wild and the standard wild bootstraps require further assumptions such as symmetry of the innovation distribution. Extensive Monte Carlo simulations show that the finite sample performance of the proposed bootstrap tests is exceptionally good, both in terms of size and of empirical rejection probabilities under the alternative hypothesis. We conclude by applying the proposed bootstrap inference to Bitcoin/USD exchange rates and to crude oil price data. We find that indeed noncausal models with heavy-tailed innovations are able to fit the data, also in periods of bubble dynamics. Supplementary materials for this article are available online.  相似文献   

4.
The present paper introduces a general notion and presents results of bootstrapped empirical estimators of the semi-Markov kernels and of the conditional transition distributions for semi-Markov processes with countable state space, constructed by exchangeably weighting the sample. Our proposal provides a unification of bootstrap methods in the semi-Markov setting including, in particular, Efron's bootstrap. Asymptotic properties of these generalised bootstrapped empirical distributions are obtained, under mild conditions by a martingale approach. We also obtain some new results on the weak convergence of the empirical semi-Markov processes. We apply these general results in several statistical problems such as the construction of confidence bands and the goodness-of-fit tests where the limiting distributions are derived under the null hypothesis. Finally, we introduce the quantile estimators and their bootstrapped versions in the semi-Markov framework and we establish their limiting laws by using the functional delta methods. Our theoretical results and numerical examples by simulations demonstrate the merits of the proposed techniques.  相似文献   

5.
《随机性模型》2013,29(1):185-213
ABSTRACT

We consider a class of single server queueing systems in which customers arrive singly and service is provided in batches, depending on the number of customers waiting when the server becomes free. Service is independent of the batch size. This system could also be considered as a batch service queue in which a server visits the queue at arbitrary times and collects a batch of waiting customers for service, or waits for a customer to arrive if there are no waiting customers. A waiting server immediately collects and processes the first arriving customer. The system is considered in discrete time. The interarrival times of customers and the inter-visit times of the server, which we call the service time, have general distributions and are represented as remaining time Markov chains. We analyze this system using the matrix-geometric method and show that the resulting R matrix can be determined explicitly in some special cases and the stationary distributions are known semi-explicitly in some other special cases.  相似文献   

6.
Multiplier bootstrap methods for conditional distributions   总被引:1,自引:0,他引:1  
The multiplier bootstrap is a fast and easy-to-implement alternative to the standard bootstrap; it has been used successfully in many statistical contexts. In this paper, resampling methods based on multipliers are proposed in a general framework where one investigates the stochastic behavior of a random vector \(\mathbf {Y}\in \mathbb {R}^d\) conditional on a covariate \(X \in \mathbb {R}\). Specifically, two versions of the multiplier bootstrap adapted to empirical conditional distributions are introduced as alternatives to the conditional bootstrap and their asymptotic validity is formally established. As the method walks hand-in-hand with the functional delta method, theory around the estimation of statistical functionals is developed accordingly; this includes the interval estimation of conditional mean and variance, conditional correlation coefficient, Kendall’s dependence measure and copula. Composite inference about univariate and joint conditional distributions is also considered. The sample behavior of the new bootstrap schemes and related estimation methods are investigated via simulations and an illustration on real data is provided.  相似文献   

7.
Although bootstrapping has become widely used in statistical analysis, there has been little reported concerning bootstrapped Bayesian analyses, especially when there is proper prior informa-tion concerning the parameter of interest. In this paper, we first propose an operationally implementable definition of a Bayesian bootstrap. Thereafter, in simulated studies of the estimation of means and variances, this Bayesian bootstrap is compared to various parametric procedures. It turns out that little information is lost in using the Bayesian bootstrap even when the sampling distribution is known. On the other hand, the parametric procedures are at times very sensitive to incorrectly specified sampling distributions, implying that the Bayesian bootstrap is a very robust procedure for determining the posterior distribution of the parameter.  相似文献   

8.
Alternative methods of estimating properties of unknown distributions include the bootstrap and the smoothed bootstrap. In the standard bootstrap setting, Johns (1988) introduced an importance resam¬pling procedure that results in more accurate approximation to the bootstrap estimate of a distribution function or a quantile. With a suitable “exponential tilting” similar to that used by Johns, we derived a smoothed version of importance resampling in the framework of the smoothed bootstrap. Smoothed importance resampling procedures were developed for the estimation of distribution functions of the Studentized mean, the Studentized variance, and the correlation coefficient. Implementation of these procedures are presented via simulation results which concentrate on the problem of estimation of distribution functions of the Studentized mean and Studentized variance for different sample sizes and various pre-specified smoothing bandwidths for the normal data; additional simulations were conducted for the estimation of quantiles of the distribution of the Studentized mean under an optimal smoothing bandwidth when the original data were simulated from three different parent populations: lognormal, t(3) and t(10). These results suggest that in cases where it is advantageous to use the smoothed bootstrap rather than the standard bootstrap, the amount of resampling necessary might be substantially reduced by the use of importance resampling methods and the efficiency gains depend on the bandwidth used in the kernel density estimation.  相似文献   

9.
In this article, we consider urn models under three types of sampling schemes in terms of the probability-generating functions. The tools are developed for the evaluation of the distributions arising from the urn models along with some examples. Furthermore, the distributions are investigated by making use of the Bell polynomials. The results presented here provide a wide framework for developing the theory of urn models. As examples, we propose new class of probability models, which are called multiple-player problems and examine their properties. Finally, we treat the parameter estimation problem in the waiting time distributions with a numerical example.  相似文献   

10.
《随机性模型》2013,29(4):429-448
This paper considers subexponential asymptotics of the tail distributions of waiting times in stationary work-conserving single-server queues with multiple Markovian arrival streams, where all arrival streams are modulated by the underlying Markov chain with finite states and service time distributions may differ for different arrival streams. Under the assumption that the equilibrium distribution of the overall (i.e., customer-average) service time distribution is subexponential, a subexponential asymptotic formula is first shown for the virtual waiting time distribution, using a closed formula recently found by the author. Further when customers are served on a FIFO basis, the actual waiting time and sojourn time distributions of customers from respective arrival streams are shown to have the same asymptotics as the virtual waiting time distribution.  相似文献   

11.
Traditional resampling methods for estimating sampling distributions sometimes fail, and alternative approaches are then needed. For example, if the classical central limit theorem does not hold and the naïve bootstrap fails, the m/n bootstrap, based on smaller-sized resamples, may be used as an alternative. An alternative to the naïve bootstrap, the sufficient bootstrap, which uses only the distinct observations in a bootstrap sample, is another recently proposed bootstrap approach that has been suggested to reduce the computational burden associated with bootstrapping. It works as long as naïve bootstrap does. However, if the naïve bootstrap fails, so will the sufficient bootstrap. In this paper, we propose combining the sufficient bootstrap with the m/n bootstrap in order to both regain consistent estimation of sampling distributions and to reduce the computational burden of the bootstrap. We obtain necessary and sufficient conditions for asymptotic normality of the proposed method, and propose new values for the resample size m. We compare the proposed method with the naïve bootstrap, the sufficient bootstrap, and the m/n bootstrap by simulation.  相似文献   

12.
Eunju Hwang 《Statistics》2017,51(4):844-861
This paper studies the stationary bootstrap applicability for realized covariations of high frequency asynchronous financial data. The stationary bootstrap method, which is characterized by a block-bootstrap with random block length, is applied to estimate the integrated covariations. The bootstrap realized covariance, bootstrap realized regression coefficient and bootstrap realized correlation coefficient are proposed, and the validity of the stationary bootstrapping for them is established both for large sample and for finite sample. Consistencies of bootstrap distributions are established, which provide us valid stationary bootstrap confidence intervals. The bootstrap confidence intervals do not require a consistent estimator of a nuisance parameter arising from nonsynchronous unequally spaced sampling while those based on a normal asymptotic theory require a consistent estimator. A Monte-Carlo comparison reveals that the proposed stationary bootstrap confidence intervals have better coverage probabilities than those based on normal approximation.  相似文献   

13.
The problem of building bootstrap confidence intervals for small probabilities with count data is addressed. The law of the independent observations is assumed to be a mixture of a given family of power series distributions. The mixing distribution is estimated by nonparametric maximum likelihood and the corresponding mixture is used for resampling. We build percentile-t and Efron percentile bootstrap confidence intervals for the probabilities and we prove their consistency in probability. The new theoretical results are supported by simulation experiments for Poisson and geometric mixtures. We compare percentile-t and Efron percentile bootstrap intervals with eight other bootstrap or asymptotic theory based intervals. It appears that Efron percentile bootstrap intervals outperform the competitors in terms of coverage probability and length.  相似文献   

14.
Random coefficient regression models have been applied in different fields during recent years and they are a unifying frame for many statistical models. Recently, Beran and Hall (Ann. Statist. 20 (1992) 1970) raised the question of the nonparametric study of the coefficients distribution. Nonparametric goodness-of-fit tests were considered in Delicado and Romo (Ann. Inst. Statist. Math. 51 (1999) 125). In this nonparametric framework, the study of parametric families for the coefficient distributions was started by Beran (Ann. Inst. Statist. Math. (1993) 639). Here we propose statistics for parametric goodness-of-fit tests and we obtain their asymptotic distributions. Moreover, we construct bootstrap approximations to these distributions, proving their validity. Finally, a simulation study illustrates our results.  相似文献   

15.
《随机性模型》2013,29(4):415-437
Abstract

In this paper, we study the total workload process and waiting times in a queueing system with multiple types of customers and a first-come-first-served service discipline. An M/G/1 type Markov chain, which is closely related to the total workload in the queueing system, is constructed. A method is developed for computing the steady state distribution of that Markov chain. Using that steady state distribution, the distributions of total workload, batch waiting times, and waiting times of individual types of customers are obtained. Compared to the GI/M/1 and QBD approaches for waiting times and sojourn times in discrete time queues, the dimension of the matrix blocks involved in the M/G/1 approach can be significantly smaller.  相似文献   

16.
This article considers computational procedures for the waiting time and queue length distributions in stationary multi-class first-come, first-served single-server queues with deterministic impatience times. There are several classes of customers, which are distinguished by deterministic impatience times (i.e., maximum allowable waiting times). We assume that customers in each class arrive according to an independent Poisson process and a single server serves customers on a first-come, first-served basis. Service times of customers in each class are independent and identically distributed according to a phase-type distribution that may differ for different classes. We first consider the stationary distribution of the virtual waiting time and then derive numerically feasible formulas for the actual waiting time distribution and loss probability. We also analyze the joint queue length distribution and provide an algorithmic procedure for computing the probability mass function of the stationary joint queue length.  相似文献   

17.
For a class of renewal process waiting time distributions defined herein, one may describe the distribution of asymptotic residual waiting times. The relationship between the two distributions characterizes the class, which includes the gamma distribution. Possible consequences for hypothesis testing are discussed.  相似文献   

18.
Theory in time series analysis is often developed under the assumption of finite-dimensional models for the data generating process. Whereas corresponding estimators such as those of a conditional mean function are reasonable even if the true dependence mechanism is more complex, it is usually necessary to capture the whole dependence structure asymptotically for the bootstrap to be valid. In contrast, we show that certain simplified bootstrap schemes which imitate only some aspects of the time series are consistent for quantities arising in nonparametric statistics. To this end, we generalize the well-known "whitening by windowing" principle to joint distributions of nonparametric estimators of the autoregression function. Consequently, we obtain that model-based nonparametric bootstrap schemes remain valid for supremum-type functionals as long as they mimic those finite-dimensional joint distributions consistently which determine the quantity of interest. As an application, we show that simple regression-type bootstrap schemes can be applied for the determination of critical values for nonparametric tests of parametric or semiparametric hypotheses on the autoregression function in the context of a general process.  相似文献   

19.
《随机性模型》2013,29(4):541-554
In this paper, we show that the discrete GI/G/1 system can be analysed as a QBD process with infinite blocks. Most importantly, we show that Matrix–geometric method can be used for analyzing this general queue system including establishing its stability criterion and for obtaining the explicit stationary probability and the waiting time distributions. This also settles the unwritten myth that Matrix–geometric method is limited to cases with at least one Markov based characterizing parameter, i.e. either interarrival or service times, in the case of queueing systems.  相似文献   

20.
In many applications of generalized linear mixed models to clustered correlated or longitudinal data, often we are interested in testing whether a random effects variance component is zero. The usual asymptotic mixture of chi‐square distributions of the score statistic for testing constrained variance components does not necessarily hold. In this article, the author proposes and explores a parametric bootstrap test that appears to be valid based on its estimated level of significance under the null hypothesis. Results from a simulation study indicate that the bootstrap test has a level much closer to the nominal one while the asymptotic test is conservative, and is more powerful than the usual asymptotic score test based on a mixture of chi‐squares. The proposed bootstrap test is illustrated using two sets of real‐life data obtained from clinical trials. The Canadian Journal of Statistics © 2009 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号