首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a warm standby n-unit system is studied. The system is operational as long as there is one unit normal. The unit online, which has a lifetime distribution governed by a phase-type distribution, is also attacked by a shock from some external causes. Assume that shocks arrive according to a Poisson process. Whenever an interarrival time of shock is less than a threshold, the unit online fails. The lifetimes of the units in warm standby is exponentially distributed. A repairman who can take multiple vacations repairs the failed units based on the “first-in-first-out” rule. The repair times and the vacation times of repairman are governed by different phase-type distributions. For this system, the Markov process governing the system is constructed. The system is studied in a transient and stationary regime; the availability, the reliability, the rates of occurrence of the different types of failures, and the working probability of the repairman are calculated. A numerical application is performed to illustrate the calculations.  相似文献   

2.
This article studies reliability for a Markov repairable two-item cold standby system with neglected failures. In the system, if a failed time of the system is too short (less than a given critical value) to cause the system to fail, then the failed time may be omitted from the downtime record, i.e., the failure effect could be neglected. In ion-channel modeling, this situation is called the time interval omission problem. The availability indices and the mean downtime are presented as two measures of reliability for this repairable system. Some numerical examples are shown to illustrate the results obtained in this article.  相似文献   

3.
System characteristics of a redundant repairable system are studied from a Bayesian viewpoint with different types of priors assumed for the unknown parameters. The system consists of two primary units, one standby unit, and one repair facility which is activated when switching to standby fails. Times to failure and times to repair of the operating units are assumed to follow exponential distributions. When time to failure and time to repair have uncertain parameters, a Bayesian approach is adopted to evaluate system characteristics. Monte Carlo simulation is used to derive the posterior distribution for the mean time to system failure and steady-state availability. Some numerical experiments are performed to illustrate the results derived in this paper.  相似文献   

4.
ABSTRACT

An alternative approach is applied for reliability analysis of standby systems on the basis of matrix renewal function. In this regard, a single-server, two identical unit cold standby systems with an imperfect switch is considered as a three-state semi-Markov process. Several important reliability measures such as availability, mean time to failure, expected number of failures, etc., are obtained for general lifetime distributions. Also, the main results have been treated to the case of exponential lifetimes and explicit formulas obtained for this case in addition of some numerical illustrations. This approach can easily be extended to more general standby systems with different configurations.  相似文献   

5.
The traditional reliability models cannot well reflect the effect of performance dependence of subsystems on the reliability of system, and neglect the problems of initial reliability and standby redundancy. In this paper, the reliability of a parallel system with active multicomponents and a single cold-standby unit has been investigated. The simultaneously working components are dependent and the dependence is expressed by a copula function. Based on the theories of conditional probability, the explicit expressions for the reliability and the MTTF of the system, in terms of the copula function and marginal lifetime distributions, are obtained. Let the copula function be the FGM copula and the marginal lifetime distribution be exponential distribution, a system with two parallel dependent units and a single cold-standby unit is taken as an example. The effect of different degrees of dependence among components on system reliability is analyzed, and the system reliability can be expressed as the linear combination of exponential reliability functions with different failure rates. For investigating how the degree of dependence affects the mean lifetime, furthermore, the parallel system with a single cold standby, comprising different number of active components, is also presented. The effectiveness of the modeling method is verified, and the method presented provides a theoretical basis for reliability design of engineering systems and physics of failure.  相似文献   

6.
In this paper, we investigate the effect of a cold standby component on the mean residual life (MRL) of a system. When the system fails, a cold standby component is immediately put in operation. We particularly focus on the coherent systems in which, after putting the standby component into operation, the failure of the system is due to the next component failure. For these systems, we define MRL functions and obtain their explicit expressions. Also some stochastic ordering results are provided. Such systems include k-out-of-n systems. Hence, our results extend some results in literature.  相似文献   

7.
Abstract

This paper presents a preventive replacement problem when a system is operating successive works with random times and suffering stochastic shocks. The works cause random amount additive damage to the system, and the system fails whenever the cumulative damage reaches a failure level threshold. As an external shock occurs, the system experiences one of the two types of shocks with age-dependent maintenance mechanism: type-I (minor) shock is rectified by a minimal repair, or type-II (catastrophic) shock causes the system to fail. To control the deterioration process, preventive replacement is scheduled to replace the system at a continuous age T or at a discrete number N of working cycles, whichever occurs first, and corrective replacement is performed immediately whenever the system fails due to either shock or damage. The optimal preventive replacement schedule that minimizes the expected cost rate is discussed analytically and computed numerically. The proposed model provides a general framework for analyzing maintenance policies and extends several existing results.  相似文献   

8.
Abstract

We consider two models of two-unit repairable systems: cold standby system and warm standby system. We suppose that the lifetimes and repair times of the units are all independent exponentially distributed random variables. Using stochastic orders we compare the lifetimes of systems under different assumptions on the parameters of exponential distributions. We also consider a cold standby system where the lifetimes and repair times of its units are not necessarily exponentially distributed.  相似文献   

9.
System characteristics of a redundant repairable system with two primary units and one standby are studied from a Bayesian viewpoint with different types of priors assumed for unknown parameters, in which the coverage factor is the same for an operating unit failure as that for a standby unit failure. Times to failure and times to repair of the operating and standby units are assumed to follow exponential distributions. When times to failure and times to repair with uncertain parameters, a Bayesian approach is adopted to evaluate system characteristics. Monte Carlo simulation is used to derive the posterior distribution for the mean time to system failure and the steady-state availability. Some numerical experiments are performed to illustrate the results derived in this paper.  相似文献   

10.
In this article, the influence of a cold standby component to the reliability of weighted k-out-of-n: G systems consisting of two different types of components is studied. Weighted k-out-of-n: G systems are generalization of k-out-of-n systems that has attracted substantial interest in reliability theory because of their various applications in engineering. A method based on residual lifetimes of mixed components is presented for computing reliability of weighted k-out-of-n: G systems with two types of components and a cold standby component. Reliability and mean time to failure of different structured systems have been computed. Moreover, obtained results are used for defining optimal system configurations that can minimize the overall system costs.  相似文献   

11.
We take a fresh look at the classic model of a device supported by a single statistically identical spare and provision for repairs, with system failure resulting whenever the currently operating unit fails before the repair of the previously failed unit is completed to allow it to become a spare. The limiting availability A(F,G) of this system depends on the life distribution F and repair time distribution G through α=∫GdF and the expected downtime. In this paper we derive several computable and sharp bounds on A(F,G) when F,G have suitable life distribution characteristics in the sense of reliability theory but are otherwise unknown except for at most two moments. Among other results, we find a sharp bound which involves the MTBF, MTTR and the second moment of the life-distribution of the device through its coefficient of variation. This leads to a maximin result for DFR repairs and DMRL lives.  相似文献   

12.
We analyze the survival time of a general duplex system sustained by a cold standby unit subjected to a priority rule. The analysis is based on advanced complex function theory (sectionally holomorphic functions). As an example, we consider Weibull–Gnedenko and Erlang distributions for failure and repair. Several graphs are displaying the survival function.  相似文献   

13.
In this paper we consider a binary, monotone system whose component states are dependent through the possible occurrence of independent common shocks, i.e. shocks that destroy several components at once. The individual failure of a component is also thought of as a shock. Such systems can be used to model common cause failures in reliability analysis. The system may be a technological one, or a human being. It is observed until it fails or dies. At this instant, the set of failed components and the failure time of the system are noted. The failure times of the components are not known. These are the so-called autopsy data of the system. For the case of independent components, i.e. no common shocks, Meilijson (1981), Nowik (1990), Antoine et al . (1993) and GTsemyr (1998) discuss the corresponding identifiability problem, i.e. whether the component life distributions can be determined from the distribution of the observed data. Assuming a model where autopsy data is known to be enough for identifia bility, Meilijson (1994) goes beyond the identifiability question and into maximum likelihood estimation of the parameters of the component lifetime distributions based on empirical autopsy data from a sample of several systems. He also considers life-monitoring of some components and conditional life-monitoring of some other. Here a corresponding Bayesian approach is presented for the shock model. Due to prior information one advantage of this approach is that the identifiability problem represents no obstacle. The motivation for introducing the shock model is that the autopsy model is of special importance when components can not be tested separately because it is difficult to reproduce the conditions prevailing in the functioning system. In Gåsemyr & Natvig (1997) we treat the Bayesian approach to life-monitoring and conditional life- monitoring of components  相似文献   

14.
In this article, we study the reliability properties of systems under bivariate log-logistic model which comes out from a particular stress-strength analysis. For this model, we obtain basic reliability characteristics of series and parallel systems and investigate their properties. We also derive distribution and moments of cold standby system under the abovementioned exchangeable model.  相似文献   

15.
ABSTRACT

In this article, we obtain exact expression for the distribution of the time to failure of discrete time cold standby repairable system under the classical assumptions that both working time and repair time of components are geometric. Our method is based on alternative representation of lifetime as a waiting time random variable on a binary sequence, and combinatorial arguments. Such an exact expression for the time to failure distribution is new in the literature. Furthermore, we obtain the probability generating function and the first two moments of the lifetime random variable.  相似文献   

16.
This paper deals with the availability and reliability of 1-out-of-n: G systems with repair. Initially, one unit is switched on and the other units are kept as cold standbys. Failure rate is arbitrary. Repair rate is constant and depends only on the number of failed units. Suitable regenerative points are identified to obtain the results.  相似文献   

17.
Stochastic orders are very useful tools to compare the lifetimes of two systems. Optimum lifetime of a series (resp. parallel) system with general standby component(s) depends on the allocation strategy of standby component(s) into the system. Here, we discuss three different models of one or more standby components. In each model, we compare different series (resp. parallel) systems (which are formed through different allocation strategies of standby component(s)) with respect to the usual stochastic order and the stochastic precedence order. The results related to the cold as well as the hot standby models are obtained as particular cases of the results discussed in this article because the model considered here is a general one.  相似文献   

18.
We study here a general load-sharing parallel system in which the lifetimes of the components of the system are arbitrary continuous random variables. The system functions if at least one component in the system functions and the surviving unit shares the whole load. Some sufficient conditions are obtained for the usual stochastic order between two different load-sharing systems. We then consider the optimal allocation problem of one load standby in a series system with two independent components. Finally, the maximum likelihood estimation of the parameters for some specific systems is discussed.  相似文献   

19.
In this paper, a system of five components is studied; one of these components is a bridge network component. Each of these components has a non-constant failure rate. The system components have linear failure rate lifetime distribution. The given system is improved by using three methods: reduction, warm standby with perfect switch and warm standby with imperfect switch. The reliability equivalence factors of the bridge structure system are obtained. The γ-fractiles are obtained to compare the original system with these improved systems. Finally, we present numerical results to show the difference between these methods.  相似文献   

20.
Abstract

This paper mainly investigates a general load-sharing parallel system having two units. First, we construct some comparisons among a load standby system, a warm standby system, a hot standby system and a cold standby system. Moreover, some stochastic comparisons between the load-sharing parallel system and one of its two components are obtained in the sense of the usual stochastic order. Finally, the residual life of this system and its properties are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号