共查询到20条相似文献,搜索用时 15 毫秒
1.
We give a critical synopsis of classical and recent tests for Poissonity, our emphasis being on procedures which are consistent against general alternatives. Two classes of weighted Cramér–von Mises type test statistics, based on the empirical probability generating function process, are studied in more detail. Both of them generalize already known test statistics by introducing a weighting parameter, thus providing more flexibility with regard to power against specific alternatives. In both cases, we prove convergence in distribution of the statistics under the null hypothesis in the setting of a triangular array of rowwise independent and identically distributed random variables as well as consistency of the corresponding test against general alternatives. Therefore, a sound theoretical basis is provided for the parametric bootstrap procedure, which is applied to obtain critical values in a large-scale simulation study. Each of the tests considered in this study, when implemented via the parametric bootstrap method, maintains a nominal level of significance very closely, even for small sample sizes. The procedures are applied to four well-known data sets. 相似文献
2.
J. Martin van Zyl 《统计学通讯:模拟与计算》2018,47(4):1146-1156
A test based on the studentized empirical characteristic function calculated in a single point is derived. An empirical power comparison is made between this test and tests like the Epps–Pulley, Shapiro–Wilks, Anderson–Darling and other tests for normality. It is shown to outperform the more complicated Epps-Pulley test based on the empirical characteristic function and a Cramér-von Mises type expression in a simulation study. The test performs especially good in large samples and the derived test statistic has an asymptotic normal distribution which is easy to apply. 相似文献
3.
T. Cacoullos and H. Papageorgiou [On some bivariate probability models applicable to traffic accidents and fatalities, Int. Stat. Rev. 48 (1980) 345–356] studied a special class of bivariate discrete distributions appropriate for modeling traffic accidents, and fatalities resulting therefrom. The corresponding random variable may be written as , with , where , are independent copies of a (discrete) random variable , and is independent of , and follows a Poisson law. If follows a Poisson law (resp. Binomial law), the resulting distribution is termed Poisson–Poisson (resp. Poisson–Binomial). L2-type goodness-of-fit statistics are constructed for the ‘general distribution’ of this kind, where may be an arbitrary discrete nonnegative random variable. The test statistics utilize a simple characterization involving the corresponding probability generating function, and are shown to be consistent. The proposed procedures are shown to perform satisfactorily in simulated data, while their application to accident data leads to positive conclusions regarding the modeling ability of this class of bivariate distributions. 相似文献
4.
Bahareh Afhami 《统计学通讯:理论与方法》2017,46(8):3649-3666
In this article, having observed the generalized order statistics in a sample, we construct a test for the hypothesis that the underlying distribution is the Pareto I distribution. The Shannon entropy of generalized order statistics is used to test the null hypothesis. 相似文献
5.
ABSTRACT This article presents goodness-of-fit tests for two and three-parameter gamma distributions that are based on minimum quadratic forms of standardized logarithmic differences of values of the moment generating function and its empirical counterpart. The test statistics can be computed without reliance to special functions and have asymptotic chi-squared distributions. Monte Carlo simulations are used to compare the proposed test for the two-parameter gamma distribution with goodness-of-fit tests employing empirical distribution function or spacing statistics. Two data sets are used to illustrate the various tests. 相似文献
6.
It has been a long history for testing whether the underlying distribution belongs to a particular family. In this paper, we propose some jackknife empirical likelihood tests via estimating equations. The proposed new tests allow one to add more relevant constraints so as to improve the powers. A simulation study shows the effectiveness of the new tests. 相似文献
7.
This article introduces graphical procedures for assessing the fit of the gamma distribution. The procedures are based on a standardized version of the cumulant generating function. Plots with bands of 95% simultaneous confidence level are developed by utilizing asymptotic and finite-sample results. The plots have linear scales and do not rely on the use of tables or values of special functions. Further, it is found through simulation, that the goodness-of-fit test implied by these plots compares favorably with respect to power to other known tests for the gamma distribution in samples drawn from lognormal and inverse Gaussian distributions. 相似文献
8.
Max Döring 《Journal of Statistical Computation and Simulation》2019,89(16):2997-3034
The aim of this article is to review existing goodness-of-fit tests for the exponential distribution under progressive Type-II censoring and to provide some new ideas and adjustments. In particular, we consider two-parameter exponentially distributed random variables and adapt the proposed test procedures to our scenario if necessary. Then, we compare their power by an extensive simulation study. Furthermore, we propose five new test procedures that provide reasonable alternatives to those already known. 相似文献
9.
José A. Sánchez-Espigares Lluís Marco-Almagro 《Journal of Statistical Computation and Simulation》2019,89(1):145-154
A methodology is proposed to compare the power of normality tests with a wide variety of alternative unimodal distributions. It is based on the representation of a distribution mosaic in which kurtosis varies vertically and skewness horizontally. The mosaic includes distributions such as exponential, Laplace or uniform, with normal occupying the centre. Simulation is used to determine the probability of a sample from each distribution in the mosaic being accepted as normal. We demonstrate our proposal by applying it to the analysis and comparison of some of the most well-known tests. 相似文献
10.
Moment generating functions and more generally, integral transforms for goodness-of-fit tests have been in use in the last several decades. Given a set of observations, the empirical transforms are easy to compute, being simply a sample mean, and due to uniqueness properties, these functions can be used for goodness-of-fit tests. This paper focuses on time series observations from a stationary process for which the moment generating function exists and the correlations have long-memory. For long-memory processes, the infinite sum of the correlations diverges and the realizations tend to have spurious trend like patterns where there may be none. Our aim is to use the empirical moment generating function to test the null hypothesis that the marginal distribution is Gaussian. We provide a simple proof of a central limit theorem using ideas from Gaussian subordination models (Taqqu, 1975) and derive critical regions for a graphical test of normality, namely the T3-plot ( Ghosh, 1996). Some simulated and real data examples are used for illustration. 相似文献
11.
Hadi Alizadeh Noughabi 《统计学通讯:理论与方法》2017,46(14):7114-7124
To model growth curves in survival analysis and biological studies the logistic distribution has been widely used. In this article, we propose a goodness-of-fit test for the logistic distribution based on an estimate of the Gini index. The exact distribution of the proposed test statistic and also its asymptotic distribution are presented. In order to compute the proposed test statistic, parameters of the logistic distribution are estimated by approximate maximum likelihood estimators (AMLEs), which are simple explicit estimators. Through Monte Carlo simulations, power comparisons of the proposed test with some known competing tests are carried. Finally, an illustrative example is presented and analyzed. 相似文献
12.
《Journal of Statistical Computation and Simulation》2012,82(7):843-855
The gamma distribution is often used to model data with right skewness. Smooth tests of goodness of fit are proposed for this distribution. Their powers are compared with powers of the Anderson–Darling test and tests based on the empirical Laplace transform, the empirical moment generating function and the independence of the mean and coefficient of variation that characterizes the gamma distribution. 相似文献
13.
AbstractFourier methods are proposed for testing the distribution of random effects in classical and robust multivariate mixed effects models. The test statistics involve estimation of the characteristic function of random effects. Theoretical and computational issues are addressed while Monte Carlo results show that the new procedures compare favorably with other methods. 相似文献
14.
AbstractWhile the Gompertz distribution is often fitted to lifespan data, testing whether the fit satisfies theoretical criteria is being neglected. Here four goodness-of-fit measures – the Anderson–Darling statistic, the correlation coefficient test, a statistic using moments, and a nested test against the generalized extreme value distributions – are discussed. Along with an application to laboratory rat data, critical values calculated by the empirical distribution of the test statistics are also presented. 相似文献
15.
This article addresses the problem of testing the null hypothesis H0 that a random sample of size n is from a distribution with the completely specified continuous cumulative distribution function Fn(x). Kolmogorov-type tests for H0 are based on the statistics C+ n = Sup[Fn(x)?F0(x)] and C? n=Sup[F0(x)?Fn(x)], where Fn(x) is an empirical distribution function. Let F(x) be the true cumulative distribution function, and consider the ordered alternative H1: F(x)≥F0(x) for all x and with strict inequality for some x. Although it is natural to reject H0 and accept H1 if C + n is large, this article shows that a test that is superior in some ways rejects F0 and accepts H1 if Cmdash n is small. Properties of the two tests are compared based on theoretical results and simulated results. 相似文献
16.
Daniele Coin 《统计学通讯:理论与方法》2017,46(23):11485-11499
The Generalized Error Distribution is a widespread flexible family of symmetric probability distribution. Thanks to its properties it is becoming more and more popular in many science fields therefore determining if a sample is drawn from a GED is an important issue that usually is pursued with a graphical approach. In this paper we present a new goodness-of-fit test for GED that shows good performances for detecting non GED distribution when the alternative distribution is either skewed or a mixture. A comparison between well known tests and this new procedure is performed through a simulation study. We have developed a function that performs the analysis described in this paper in the R environment. The computational time required to compute this procedure is negligible. 相似文献
17.
18.
In this study, we consider an entropy-type goodness-of-fit (GOF) test based on integrated distribution functions. We first construct the test for the simple vs. simple hypothesis and then extend it to the composite hypothesis case. It is shown that under regularity conditions, the null limiting distribution of the proposed test is a function of a Brownian bridge. A bootstrap method is also considered and is shown to be weakly consistent. A simulation study and real data analysis are conducted for illustration. 相似文献
19.
In this paper, a new generalization of alpha-skew-normal distribution is considered. Some properties of this distribution, which is denoted by GASN(α, λ), including moments, maximum likelihood estimation of parameters, and some other properties are studied. Finally, using a real data set, we show that our new distribution is the best-fitted distribution for the used data among normal, skew normal, alpha-skew-normal, and skew-bimodal-normal distributions. 相似文献
20.
《Journal of Statistical Computation and Simulation》2012,82(2):205-212
Chen and Balakrishnan [Chen, G. and Balakrishnan, N., 1995, A general purpose approximate goodness-of-fit test. Journal of Quality Technology, 27, 154–161] proposed an approximate method of goodness-of-fit testing that avoids the use of extensive tables. This procedure first transforms the data to normality, and subsequently applies the classical tests for normality based on the empirical distribution function, and critical points thereof. In this paper, we investigate the potential of this method in comparison to a corresponding goodness-of-fit test which instead of the empirical distribution function, utilizes the empirical characteristic function. Both methods are in full generality as they may be applied to arbitrary laws with continuous distribution function, provided that an efficient method of estimation exists for the parameters of the hypothesized distribution. 相似文献