首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

In profile monitoring, control charts are proposed to detect unanticipated changes, and it is usually assumed that the in-control parameters are known. However, due to the characteristics of a system or process, the prespecified changes would appear in the process. Moreover, in most applications, the in-control parameters are usually unknown. To overcome these issues, we develop the zone control charts with estimated parameters to detect small shifts of these prespecified changes. The effects of estimation error have been investigated on the performance of the proposed charts. To account for the practitioner-to-practitioner variability, the expected average run length (ARL) and the standard deviation of the average run length (SDARL) is used as the performance metrics. Our results show that the estimation error results in the significant variation in the ARL distribution. Furthermore, in order to adequately reduce the variability, more phase I samples are required in terms of the SDARL metric than that in terms of the expected ARL metric. In addition, more observations on each sampled profile are suggested to improve the charts' performance, especially for small phase I sample sizes. Finally, an illustrative example is given to show the performance of the proposed zone control charts.  相似文献   

2.
In this article, Six Sigma zone control charts (SSZCCs) are proposed for world class organizations. The transition probabilities are obtained using the Markov chain approach. The Average Run Length (ARL) values are then presented. The ARL performance of the proposed SSZCCs and the standard Six Sigma control chart (SSCC) without zones or run rules is studied. The ARL performance of these charts is then compared with those of the other standard zone control charts (ZCCs), the modified ZCC and the traditional Shewhart control chart (SCC) with common run rules. As expected, it is shown that the proposed SSZCC outperforms the standard SSCC without zones or run rules for process shifts of any magnitude. When compared to the other standard ZCCs and the Shewhart chart with common run rules, it is observed that the proposed SSZCCs have much higher false alarm rates for smaller shifts and hence they prevent unwanted process disturbances. The application of the proposed SSZCC is illustrated using a real time example.  相似文献   

3.
In some applications, quality engineers cannot monitor the processes at the beginning of the production process. Because the process parameters are unknown and there are not enough initial samples to estimate the process parameters. Self-starting control charts are applied to monitor processes at the start-up stages with no enough initial samples. In this paper, we propose three self-starting control charts to monitor a logistic regression profile which models the relationship between a binomial response variable and explanatory variables. Also, we compare the proposed control charts with each other through simulation studies in terms of average run length (ARL) criterion.  相似文献   

4.
A control chart for monitoring process variation by using multiple dependent state (MDS) sampling is constructed in the present article. The operational formulas for in-control and out-of-control average run lengths (ARLs) are derived. Control constants are established by considering the target in-control ARL at a normal process. The extensive ARL tables are reported for various parameters and shifted values of process parameters. The performance of the proposed control chart has been evaluated with several existing charts in regard of ARLs, which empowered the presented chart and proved far better for timely detection of assignable causes. The application of the proposed concept is illustrated with a real-life industrial example and a simulation-based study to elaborate strength of the proposed chart over the existing concepts.  相似文献   

5.
ABSTRACT

Runs rules are usually used with Shewhart-type charts to enhance the charts' sensitivities toward small and moderate shifts. Abbas et al. in 2011 took it a step further by proposing two runs rules schemes, applied to the exponentially weighted moving average (EWMA) chart and evaluated their average run length (ARL) performances using simulation. They showed that the proposed schemes are superior to the classical EWMA chart and other schemes being investigated. Besides pointing out some erroneous ARL and standard deviation of the run length (SDRL) computations in Abbas et al., this paper presents a Markov chain approach for computing the ARL, percentiles of the run length (RL) distribution and SDRL, for the two runs rules schemes of Abbas et al. Using Markov chain, we also propose two combined runs rules EWMA schemes to quicken the two schemes of Abbas et al. in responding to large shifts. The runs rules (basic and combined rules) EWMA schemes will be compared with some existing control charting methods, where the former charts are shown to prevail.  相似文献   

6.
A multivariate extension of the adaptive exponentially weighted moving average (AEWMA) control chart is proposed. The new multivariate scheme can detect small and large shifts in the process mean vector effectively. The proposed scheme can be viewed as a smooth combination of a multivariate exponentially weighted moving average (MEWMA) chart and a Shewhart χ2-chart. The optimal design of the proposed chart is given according to a pre-specified in-control average run length and two shift sizes; a small and large shift each measured in terms of the non centrality parameter. The signal resistance of the newly proposed multivariate chart is also given. Comparisons among the new chart, the MEWMA chart, and the combined Shewhart-MEWMA (S-MEWMA) chart in terms of the standard and worst-case average run length profiles are presented. In addition, the three charts are compared with respect to their worst-case signal resistance values. The proposed chart gives somewhat better worst-case ARL and signal resistance values than the competing charts. It also gives better standard ARL performance especially for moderate and large shifts. The effectiveness of our proposed chart is illustrated through an example with simulated data set.  相似文献   

7.
Control charts are commonly used to monitor quality of a process or product characterized by a quality characteristic or a vector of quality characteristics. However, in many practical situations the quality of a process or product can be characterized by a function or profile. Here we consider a linear function and investigate the violation of common independence assumption implicitly considered in most control charting applications. We specifically consider the case when profiles are not independent from each other over time. In this article, the effect of autocorrelation between profiles is investigated using average run length (ARL) criterion. Simulation results indicate significant impact on the ARL values when autocorrelation is overlooked. In addition, three methods based on time series approach are used to eliminate the effect of autocorrelation. Their performances are compared using ARL criterion.  相似文献   

8.
The Weibull distribution is one of the most popular distributions for lifetime modeling. However, there has not been much research on control charts for a Weibull distribution. Shewhart control is known to be inefficient to detect a small shift in the process, while exponentially weighted moving average (EWMA) and cumulative sum control chart (CUSUM) charts have the ability to detect small changes in the process. To enhance the performance of a control chart for a Weibull distribution, we introduce a new control chart based on hybrid EWMA and CUSUM statistic, called the HEWMA-CUSUM chart. The performance of the proposed chart is compared with the existing chart in terms of the average run length (ARL). The proposed chart is found to be more sensitive than the existing chart in ARL. A simulation study is provided for illustration purposes. A real data is also applied to the proposed chart for practical use.  相似文献   

9.
Normally, an average run length (ARL) is used as a measure for evaluating the detecting performance of a multivariate control chart. This has a direct impact on the false alarm cost in Phase II. In this article, we first conduct a simulation study to calculate both in-control and out-of-control ARLs under various combinations of process shifts and number of samples. Then, a trade-off analysis between sampling inspection and false alarm costs is performed. Both the simulation results and trade-off analysis suggest that the optimal number of samples for constructing a multivariate control chart in Phase I can be determined.  相似文献   

10.
A class of distribution-free control charts   总被引:3,自引:0,他引:3  
Summary.  A class of Shewhart-type distribution-free control charts is considered. A key advantage of these charts is that the in-control run length distribution is the same for all continuous process distributions. Exact expressions for the run length distribution and the average run length (ARL) are derived and properties of the charts are studied via evaluations of the run length distribution probabilities and the ARL. Tables are provided for implementation for some typical ARL values and false alarm rates. The charts proposed are preferable from a robustness point of view, have attractive ARL properties and would be particularly useful in situations where one uses a classical Shewhart   X -chart. A numerical illustration is given.  相似文献   

11.
In this paper, a new single exponentially weighted moving average (EWMA) control chart based on the weighted likelihood ratio test, referred to as the WLRT chart, is proposed for the problem of monitoring the mean and variance of a normally distributed process variable. It is easy to design, fast to compute, and quite effective for diverse cases including the detection of the decrease in variability and individual observation case. The optimal parameters that can be used as a design aid in selecting specific parameter values based on the average run length (ARL) and the sample size are provided. The in-control (IC) and out-of-control (OC) performance properties of the new chart are compared with some other existing EWMA-type charts. Our simulation results show that the IC run length distribution of the proposed chart is similar to that of a geometric distribution, and it provides quite a robust and satisfactory overall performance for detecting a wide range of shifts in the process mean and/or variability.  相似文献   

12.
In this article, we introduce a new multivariate cumulative sum chart, where the target mean shift is assumed to be a weighted sum of principal directions of the population covariance matrix. This chart provides an attractive performance in terms of average run length (ARL) for large-dimensional data and it also compares favorably to existing multivariate charts including Crosier's benchmark chart with updated values of the upper control limit and the associated ARL function. In addition, Monte Carlo simulations are conducted to assess the accuracy of the well-known Siegmund's approximation of the average ARL function when observations are normal distributed. As a byproduct of the article, we provide updated values of upper control limits and the associated ARL function for Crosier's multivariate CUSUM chart.  相似文献   

13.
A statistical quality control chart is an important tool of the statistical process control, which is widely used to control and monitor a production process. The CUSUM chart is designed to detect a specific shift, provided that the shift size is known in advance. In practice, however, shift sizes are rarely known. It is then customary to use an adaptive CUSUM chart, which can effectively detect a range of shift sizes. In this paper, we enhance the sensitivities of the improved adaptive CUSUM mean charts using an auxiliary-information-based (AIB) mean estimator. The run length performances of the proposed charts are compared with those of the AIB adaptive and non-adaptive CUSUM charts in terms of the average run length (ARL), extra quadratic loss, and integral relative ARL. These run length comparisons reveal that the proposed charts are more sensitive than the existing charts when detecting different kinds of shift in the process mean. An example is given to demonstrate the implementation of existing and proposed charts.  相似文献   

14.
This article is concerned with the effect of the methods for handling missing values in multivariate control charts. We discuss the complete case, mean substitution, regression, stochastic regression, and the expectation–maximization algorithm methods for handling missing values. Estimates of mean vector and variance–covariance matrix from the treated data set are used to build the multivariate exponentially weighted moving average (MEWMA) control chart. Based on a Monte Carlo simulation study, the performance of each of the five methods is investigated in terms of its ability to obtain the nominal in-control and out-of-control average run length (ARL). We consider three sample sizes, five levels of the percentage of missing values, and three types of variable numbers. Our simulation results show that imputation methods produce better performance than case deletion methods. The regression-based imputation methods have the best overall performance among all the competing methods.  相似文献   

15.
Simultaneous monitoring of the mean vector and covariance matrix in multivariate processes allows practitioners to avoid the inflated false alarm rate that results from using two independent control charts. In this paper, we extend exponentially weighted moving average semicircle and generally weighted moving average semicircle control charts to monitor the mean vector and covariance matrix of multivariate multiple linear regression profiles in Phase II simultaneously. These new control charts are compared with the existing control charts in the literature in terms of the average run length criterion. Finally, a case is considered to show the application of the proposed charts.  相似文献   

16.
Profile data emerges when the quality of a product or process is characterized by a functional relationship among (input and output) variables. In this paper, we focus on the case where each profile has one response variable Y, one explanatory variable x, and the functional relationship between these two variables can be rather arbitrary. The basic concept can be applied to a much wider case, however. We propose a general method based on the Generalized Likelihood Ratio Test (GLRT) for monitoring of profile data. The proposed method uses nonparametric regression to estimate the on-line profiles and thus does not require any functional form for the profiles. Both Shewhart-type and EWMA-type control charts are considered. The average run length (ARL) performance of the proposed method is studied. It is shown that the proposed GLRT-based control chart can efficiently detect both location and dispersion shifts of the on-line profiles from the baseline profile. An upper control limit (UCL) corresponding to a desired in-control ARL value is constructed.  相似文献   

17.
Statistical control charts are often used in industry to monitor processes in the interests of quality improvement. Such charts assume independence and normality of the control statistic, but these assumptions are often violated in practice. To better capture the true shape of the underlying distribution of the control statistic, we utilize the g-and-k distributions to estimate probability limits, the true ARL, and the error in confidence that arises from incorrectly assuming normality. A sensitivity assessment reveals that the extent of error in confidence associated with control chart decision-making procedures increases more rapidly as the distribution becomes more skewed or as the tails of the distribution become longer than those of the normal distribution. These methods are illustrated using both a frequentist and computational Bayesian approach to estimate the g-and-k parameters in two different practical applications. The Bayesian approach is appealing because it can account for prior knowledge in the estimation procedure and yields posterior distributions of parameters of interest such as control limits.  相似文献   

18.
In practice, different practitioners will use different Phase I samples to estimate the process parameters, which will lead to different Phase II control chart's performance. Researches refer to this variability as between-practitioners-variability of control charts. Since between-practitioners-variability is important in the design of the CUSUM median chart with estimated process parameters, the standard deviation of average run length (SDARL) will be used to study its properties. It is shown that the CUSUM median chart requires a larger amount of Phase I samples to sufficiently reduce the variation in the in-control ARL of the CUSUM median chart. Considering the limitation of the amount of the Phase I samples, a bootstrap approach is also used here to adjust the control limits of the CUSUM median chart. Comparisons are made for the CUSUM and Shewhart median charts with estimated parameters when using the adjusted- and unadjusted control limits and some conclusions are made.  相似文献   

19.
In this paper, the problem of monitoring process data that can be modelled by exponential distribution is considered when observations are from type-II censoring. Such data are common in many practical inspection environment. An average run length unbiased (ARL-unbiased) control scheme is developed when the in-control scale parameter is known. The performance of the proposed control charts are investigated in terms of the ARL and standard deviation of the run length. The effects of parameter estimation on the proposed control charts are also evaluated. Then, we consider the design of the ARL-unbiased control charts when the in-control scale parameter is estimated. Finally, an example is used to illustrate the implementation of the proposed control charts.  相似文献   

20.
In statistical process control applications, profiles functions are considered an efficient way of representing quality of products or processes. Classical and Bayesian thoughts are two chief sources of defining control charting structures for profiles monitoring. This Study introduces novel Bayesian CUSUM control structures for profiles monitoring. The comprehensive comparative study identifies that the proposed Bayesian CUSUM control charts under conjugate priors has better expected performance than competing methods. The implementation of Bayesian structures requires detailed information about process parameters which come up with considerable benefits. In addition, simulative example and case study further justified the superiority of proposed techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号