首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the estimation of the conditional quantile function when the covariates take values in some abstract function space. The main goal of this article is to establish the almost complete convergence and the asymptotic normality of the kernel estimator of the conditional quantile under the α-mixing assumption and on the concentration properties on small balls of the probability measure of the functional regressors. Some applications and particular cases are studied. This approach can be applied in time series analysis to the prediction and building of confidence bands. We illustrate our methodology with El Niño data.  相似文献   

2.
In this paper we study a smooth estimator of the regression quantile function in the censorship model when the covariates take values in some abstract function space. The main goal of this paper is to establish the asymptotic normality of the kernel estimator of the regression quantile, under α-mixing condition and, on the concentration properties on small balls probability measure of the functional regressors. Some applications and particular cases are studied. This study can be applied in time series analysis to the prediction and building confidence bands. Some simulations are drawn to lend further support to our theoretical results and to compare the quality of behavior of the estimator for finite samples with different rates of censoring and sizes.  相似文献   

3.
In this paper, we investigate a nonparametric robust estimation for spatial regression. More precisely, given a strictly stationary random field Zi=(Xi,Yi)iNNN1Zi=(Xi,Yi)iNNN1, we consider a family of robust nonparametric estimators for a regression function based on the kernel method. Under some general mixing assumptions, the almost complete consistency and the asymptotic normality of these estimators are obtained. A robust procedure to select the smoothing parameter adapted to the spatial data is also discussed.  相似文献   

4.
In this paper, under a nonparametric regression model, we introduce two families of robust procedures to estimate the regression function when missing data occur in the response. The first proposal is based on a local MM-functional applied to the conditional distribution function estimate adapted to the presence of missing data. The second proposal imputes the missing responses using the local MM-smoother based on the observed sample and then estimates the regression function with the completed sample. We show that the robust procedures considered are consistent and asymptotically normally distributed. A robust procedure to select the smoothing parameter is also discussed.  相似文献   

5.
Abstract

Nonparametric density estimates are obtained by the method of asymptotic regression (AR) on empirical stochastic processes. Rates of convergence for the density estimator are obtained in various norms. The methodology is applied to density estimation in two inverse problems: deconvolution and Wicksell's corpuscle problem.  相似文献   

6.
The asymptotic behavior of the nonparametric density estimator has been given for a multivariate mixture model. It has been observed that the estimator is asymptotically normally distributed with bias of size h 2 and variance of size (nh)?1.  相似文献   

7.
ABSTRACT

Nonstandard mixtures are those that result from a mixture of a discrete and a continuous random variable. They arise in practice, for example, in medical studies of exposure. Here, a random variable that models exposure might have a discrete mass point at no exposure, but otherwise may be continuous. In this article we explore estimating the distribution function associated with such a random variable from a nonparametric viewpoint. We assume that the locations of the discrete mass points are known so that we will be able to apply a classical nonparametric smoothing approach to the problem. The proposed estimator is a mixture of an empirical distribution function and a kernel estimate of a distribution function. A simple theoretical argument reveals that existing bandwidth selection algorithms can be applied to the smooth component of this estimator as well. The proposed approach is applied to two example sets of data.  相似文献   

8.
9.
We consider the estimation of the conditional quantile when the interest variable is subject to left truncation. Under regularity conditions, it is shown that the kernel estimate of the conditional quantile is asymptotically normally distributed, when the data exhibit some kind of dependence. We use asymptotic normality to construct confidence bands for predictors based on the kernel estimate of the conditional median.  相似文献   

10.
This article investigates nonparametric estimation of variance functions for functional data when the mean function is unknown. We obtain asymptotic results for the kernel estimator based on squared residuals. Similar to the finite dimensional case, our asymptotic result shows the smoothness of the unknown mean function has an effect on the rate of convergence. Our simulation studies demonstrate that estimator based on residuals performs much better than that based on conditional second moment of the responses.  相似文献   

11.
Functional regression functions, with explanatory variables taking values in some abstract function space, have been studied extensively. In this article, we aim to investigate the multivariate functional regression function, and propose a nonparametric estimator for the multivariate case. By applying some properties of U-statistics, some asymptotic distributions of such estimator are obtained under different cases.  相似文献   

12.
This article considers the properties of a nonparametric estimator developed for a reliability function which is used in many reliability problems. Properties such as asymptotic unbiasedness and consistency are proven for the estimator and using U-statistics, weak convergence of the estimator to a normal distribution is shown. Finally, numerical examples based on an extensive simulation study are presented to illustrate the theory and compare the estimator developed in this article with another based directly on the ratio of two empirical distributions studied in Zardasht and Asadi (2010 Zardasht , V. , Asadi , M. ( 2010 ). Evaluation of P(X t  > Y t ) when both X t and Y t are residual lifetimes of two systems . Statistica Neerlandica 64 : 460481 .[Crossref], [Web of Science ®] [Google Scholar]).  相似文献   

13.
This article provides a solution of a generalized eigenvalue problem for integrated processes of order 2 in a nonparametric framework. Our analysis focuses on a pair of random matrices related to such integrated process. The matrices are constructed considering some weight functions. Under asymptotic conditions on such weights, convergence results in distribution are obtained and the generalized eigenvalue problem is solved. Differential equations and stochastic calculus theory are used.  相似文献   

14.
We consider the estimation of a change point or discontinuity in a regression function for random design model with long memory errors. We provide several change-point estimators and investigate the consistency of the estimators. Using the fractional ARIMA process as an example of long memory process, we report a small Monte Carlo experiment to compare the performance of the estimators in finite samples. We finish by applying the method to a climatological data example.  相似文献   

15.
In this article, we discuss the estimation of the parameter function for a functional logistic regression model in the presence of outliers. We consider ways that allow for the parameter estimator to be resistant to outliers, in addition to minimizing multicollinearity and reducing the high dimensionality, which is inherent with functional data. To achieve this, the functional covariates and functional parameter of the model are approximated in a finite-dimensional space generated by an appropriate basis. This approach reduces the functional model to a standard multiple logistic model with highly collinear covariates and potential high-dimensionality issues. The proposed estimator tackles these issues and also minimizes the effect of functional outliers. Results from a simulation study and a real world example are also presented to illustrate the performance of the proposed estimator.  相似文献   

16.
17.
This article considers a nonparametric varying coefficient regression model with longitudinal observations. The relationship between the dependent variable and the covariates is assumed to be linear at a specific time point, but the coefficients are allowed to change over time. A general formulation is used to treat mean regression, median regression, quantile regression, and robust mean regression in one setting. The local M-estimators of the unknown coefficient functions are obtained by local linear method. The asymptotic distributions of M-estimators of unknown coefficient functions at both interior and boundary points are established. Various applications of the main results, including estimating conditional quantile coefficient functions and robustifying the mean regression coefficient functions are derived. Finite sample properties of our procedures are studied through Monte Carlo simulations.  相似文献   

18.
李双博 《统计研究》2018,35(6):117-128
函数型数据研究近年来为越来越多的学者所重视,其在天文,医药,经济现象,生态环境及工业制造等诸多方面均有重要应用.非参数统计是统计研究的一个重要方面,其中核函数估计和局部多项式方法是这一类研究中重要常用方法.函数型数据的非参数方法中以核函数估计方法较为常见,且其收敛速度与极限分布无论在独立情形还是相依情形都有理论结果.而局部多项式的研究在函数型数据背景下较为少见,原因在于将局部多项式方法推广到函数型数据背景一直是一个难题. Marin, Ferraty, Vieu [Journal of Nonparametric Statistics, 22 (5) (2010), pp.617-632] 提出了非参函数型模型的局部回归估计. 这种估计可以看作是局部多项式估计在函数型数据背景下的一个推广.这种方法提出后,许多学者进一步研究了这种方法,考察了这种方法的收敛速度和极限分布,并将这种方法应用到不同的模型中以适应实际需求.但是,前人的研究都要求数据具有独立同分布的性质.然而许多实际数据并不符合这一假设.本文研究了在相依函数型数据情形下局部回归估计的渐近正态性.由于估计方法有差异,核函数估计的研究方法无法直接推广到局部回归估计,而相依性结构也给研究带来了一些挑战,我们采用Bernstein分块方法将相依性问题转化为渐近独立的问题,从而得到了估计的渐近正态性.此外我们还采用数据模拟的方法进一步验证了渐近正态的结果.  相似文献   

19.

The additive AR-2D model has been successfully related to the modeling of satelital images both optic and of radar of synthetic opening. Having in mind the errors that are produced in the process of captation and quantification of the image, an interesting subject, is the robust estimation of the parameters in this model. Besides the robust methods in image models are also applied in some important image processing situations such as segmentation by texture and image restoration in the presence of outliers. This paper is concerned with the development and performance of the robust RA estimator proposed by Ojeda (1998) for the estimation of parameters in contaminated AR-2D models. Here, we implement this estimator and we show by simulation study that it has a better performance than the classic least square estimator and the robust M and GM estimators in an additive outlier contaminated image model.  相似文献   

20.
Robust inference on the parameters in generalized linear models is performed using the weighted likelihood method. Two cases are considered: a case with replicated observations and a case with a single observation of the dependent variable for each combination of the explanatory variables. The first case is common in the design of experiments, while the second case arises in observational studies. Theoretical and computational results on real datasets are presented and compared with other existing techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号