首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We consider the Bayesian D-optimal design problem for exponential growth models with one, two or three parameters. For the one-parameter model conditions on the shape of the density of the prior distribution and on the range of its support are given guaranteeing that a one-point design is also Bayesian D-optimal within the class of all designs. In the case of two parameters the best two-point designs are determined and for special prior distributions it is proved that these designs are Bayesian D-optimal. Finally, the exponential growth model with three parameters is investigated. The best three-point designs are characterized by a nonlinear equation. The global optimality of these designs cannot be proved analytically and it is demonstrated that these designs are also Bayesian D-optimal within the class of all designs if gamma-distributions are used as prior distributions.  相似文献   

2.
We construct D-optimal designs for the Michaelis-Menten model when the variance of the response depends on the independent variable. However, this dependence is only partially known. A Bayesian approacn is used to find an optimal design by incorporating the prior lnformation about the variance structure. We demonstrate the method for a class of error variance structures and present efficiencies of these optimal designs under prior mis-specifications. In particular, we show that an erroneous assumption on the variance structure for the Michaelis-Menten model can have serious consequences.  相似文献   

3.
Bayesian optimal designs have received increasing attention in recent years, especially in biomedical and clinical trials. Bayesian design procedures can utilize the available prior information of the unknown parameters so that a better design can be achieved. With this in mind, this article considers the Bayesian A- and D-optimal designs of the two- and three-parameter Gamma regression model. In this regard, we first obtain the Fisher information matrix of the proposed model and then calculate the Bayesian A- and D-optimal designs assuming various prior distributions such as normal, half-normal, gamma, and uniform distribution for the unknown parameters. All of the numerical calculations are handled in R software. The results of this article are useful in medical and industrial researches.  相似文献   

4.
A sufficient condition for the Bayes A-optimality of block designs when comparing a standard treatment with v test treatments is given by Majumdar. (In:Optimal Design and Analysis of Experiments, Y. Dodge, V. V. Fedorov and H. P. Wynn (Eds.), 15-27, North-Holland, 1988). The priors that he considers depend on a constant α ε [0, ∞), with α - 0 corresponding to no prior information at all. The given sufficient condition, consequently, also depends on a. Large families of optimal and highly efficient designs are only known for the case α - 0. We will show how some of the results for α - 0 can be extended to obtain large families of optimal and highly efficient designs for arbitrary values of α. In addition, these results are useful when considering design robustness against an improper choice of α.  相似文献   

5.
This paper considers the optimal design problem for multivariate mixed-effects logistic models with longitudinal data. A decomposition method of the binary outcome and the penalized quasi-likelihood are used to obtain the information matrix. The D-optimality criterion based on the approximate information matrix is minimized under different cost constraints. The results show that the autocorrelation coefficient plays a significant role in the design. To overcome the dependence of the D-optimal designs on the unknown fixed-effects parameters, the Bayesian D-optimality criterion is proposed. The relative efficiencies of designs reveal that both the cost ratio and autocorrelation coefficient play an important role in the optimal designs.  相似文献   

6.
ABSTRACT

Nowadays, generalized linear models have many applications. Some of these models which have more applications in the real world are the models with random effects; that is, some of the unknown parameters are considered random variables. In this article, this situation is considered in logistic regression models with a random intercept having exponential distribution. The aim is to obtain the Bayesian D-optimal design; thus, the method is to maximize the Bayesian D-optimal criterion. For the model was considered here, this criterion is a function of the quasi-information matrix that depends on the unknown parameters of the model. In the Bayesian D-optimal criterion, the expectation is acquired in respect of the prior distributions that are considered for the unknown parameters. Thus, it will only be a function of experimental settings (support points) and their weights. The prior distribution of the fixed parameters is considered uniform and normal. The Bayesian D-optimal design is finally calculated numerically by R3.1.1 software.  相似文献   

7.
The D-minimax criterion for estimating slopes of a response surface involving k factors is considered for situations where the experimental region χ and the region of interest ? are co-centered cubes but not necessarily identical. Taking χ = [ ? 1, 1]k and ? = [ ? R, R]k, optimal designs under the criterion for the full second-order model are derived for various values of R and their relative performances investigated. The asymptotically optimal design as R → ∞ is also derived and investigated. In addition, the optimal designs within the class of product designs are obtained. In the asymptotic case it is found that the optimal product design is given by a solution of a cubic equation that reduces to a quadratic equation for k = 3?and?6. Relative performances of various designs obtained are examined. In particular, the optimal asymptotic product design and the traditional D-optimal design are compared and it is found that the former performs very well.  相似文献   

8.
A linear model with one treatment at V levels and first order regression on K continuous covariates with values on a K-cube is considered. We restrict our attention to classes of designs d for which the number of observations N to be taken is a multiple of V, i.e. N = V × R with R ≥2, and each treatment level is observed R times. Among these designs, called here equireplicated, there is a subclass characterized by the following: the allocation matrix of each treatment level (for short, allocation matrix) is obtained through cyclic permutation of the columns of the allocation matrix of the first treatment level. We call these designs cyclic. Besides having easy representation, the most efficient cyclic designs are often D-optimal in the class of equireplicated designs. A known upper bound for the determinant of the information matrix M(d) of a design, in the class of equireplicated ones, depends on the congruences of N and V modulo 4. For some combinations of parameter moduli, we give here methods of constructing families of D-optimal cyclic designs. Moreover, for some sets of parameters (N, V,K = V), where the upper bound on ∣M(d)∣ (for that specific combination of moduli) is not attainable, it is also possible to construct highly D-efficient cyclic designs. Finally, for N≤24 and V≤6, computer search was used to determine the most efficient design in the class of cyclic ones. They are presented, together with their respective efficiency in the class of equireplicated designs.  相似文献   

9.
The Simon's two‐stage design is the most commonly applied among multi‐stage designs in phase IIA clinical trials. It combines the sample sizes at the two stages in order to minimize either the expected or the maximum sample size. When the uncertainty about pre‐trial beliefs on the expected or desired response rate is high, a Bayesian alternative should be considered since it allows to deal with the entire distribution of the parameter of interest in a more natural way. In this setting, a crucial issue is how to construct a distribution from the available summaries to use as a clinical prior in a Bayesian design. In this work, we explore the Bayesian counterparts of the Simon's two‐stage design based on the predictive version of the single threshold design. This design requires specifying two prior distributions: the analysis prior, which is used to compute the posterior probabilities, and the design prior, which is employed to obtain the prior predictive distribution. While the usual approach is to build beta priors for carrying out a conjugate analysis, we derived both the analysis and the design distributions through linear combinations of B‐splines. The motivating example is the planning of the phase IIA two‐stage trial on anti‐HER2 DNA vaccine in breast cancer, where initial beliefs formed from elicited experts' opinions and historical data showed a high level of uncertainty. In a sample size determination problem, the impact of different priors is evaluated.  相似文献   

10.
In this paper, a Bayesian two-stage D–D optimal design for mixture experimental models under model uncertainty is developed. A Bayesian D-optimality criterion is used in the first stage to minimize the determinant of the posterior variances of the parameters. The second stage design is then generated according to an optimalityprocedure that collaborates with the improved model from the first stage data. The results show that a Bayesian two-stage D–D-optimal design for mixture experiments under model uncertainty is more efficient than both the Bayesian one-stage D-optimal design and the non-Bayesian one-stage D-optimal design in most situations. Furthermore, simulations are used to obtain a reasonable ratio of the sample sizes between the two stages.  相似文献   

11.
As a generalization of the paired comparison designs, the experimental design which considers the weighted difference between responses is studied. D-optimal designs are constructed for a model with main effects and first-order interactions. The experimental region is a hypercube or a hypersphere.  相似文献   

12.
Optimal designs for estimating the optimum mixing proportions in a quadratic mixture model was first investigated by Pal and Mandal (2006). In this article, similar investigation is carried out when mean response in a mixture experiment is described by a quadratic log contrast model. It is found that in a symmetric subspace of the finite dimensional simplex, there exists a D-optimal design that puts weights at the centroid of the sub-space and the vertices of the experimental domain. The optimality is checked by numerical computation using Equivalence Theorem.  相似文献   

13.
Reference priors are theoretically attractive for the analysis of geostatistical data since they enable automatic Bayesian analysis and have desirable Bayesian and frequentist properties. But their use is hindered by computational hurdles that make their application in practice challenging. In this work, we derive a new class of default priors that approximate reference priors for the parameters of some Gaussian random fields. It is based on an approximation to the integrated likelihood of the covariance parameters derived from the spectral approximation of stationary random fields. This prior depends on the structure of the mean function and the spectral density of the model evaluated at a set of spectral points associated with an auxiliary regular grid. In addition to preserving the desirable Bayesian and frequentist properties, these approximate reference priors are more stable, and their computations are much less onerous than those of exact reference priors. Unlike exact reference priors, the marginal approximate reference prior of correlation parameter is always proper, regardless of the mean function or the smoothness of the correlation function. This property has important consequences for covariance model selection. An illustration comparing default Bayesian analyses is provided with a dataset of lead pollution in Galicia, Spain.  相似文献   

14.
The authors propose a mixture-amount model, which is quadratic both in the proportions of mixing components and the amount of mixture. They attempt to find the A- and D-optimal designs for the estimation of the model parameters within a subclass of designs. The optimality of the derived designs in the entire class of competing designs has been investigated through equivalence theorem.  相似文献   

15.
Within the context of choice experimental designs, most authors have proposed designs for the multinomial logit model under the assumption that only the main effects matter. Very little attention has been paid to designs for attribute interaction models. In this article, three types of Bayesian D-optimal designs for the multinomial logit model are studied: main-effects designs, interaction-effects designs, and composite designs. Simulation studies are used to show that in situations where a researcher is not sure whether or not attribute interaction effects are present, it is best to take into account interactions in the design stage. In particular, it is shown that a composite design constructed by including an interaction-effects model and a main-effects model in the design criterion is most robust against misspecification of the underlying model when it comes to making precise predictions.  相似文献   

16.
This paper reviews difficulties with the interpretation and use of the prior parameter u required in the Dirichlet approach to nonpararnetric Bayesian statistics. Two subjective prior distributions are introduced and studied. These priors are obtained computationally by requiring that the experimenter specify certain constraints.  相似文献   

17.
Noninformative priors are used for estimating the reliability of a stress-strength system. Several reference priors (cf. Berger and Bernardo 1989, 1992) are derived. A class of priors is found by matching the coverage probabilities of one-sided Bayesian credible intervals with the corresponding frequentist coverage probabilities. It turns out that none of the reference priors is a matching prior. Sufficient conditions for propriety of posteriors under reference priors and matching priors are provided. A simple matching prior is compared with three reference priors when sample sizes are small. The study shows that the matching prior performs better than Jeffreys's prior and reference priors in meeting the target coverage probabilities.  相似文献   

18.
Several bivariate beta distributions have been proposed in the literature. In particular, Olkin and Liu [A bivariate beta distribution. Statist Probab Lett. 2003;62(4):407–412] proposed a 3 parameter bivariate beta model which Arnold and Ng [Flexible bivariate beta distributions. J Multivariate Anal. 2011;102(8):1194–1202] extend to 5 and 8 parameter models. The 3 parameter model allows for only positive correlation, while the latter models can accommodate both positive and negative correlation. However, these come at the expense of a density that is mathematically intractable. The focus of this research is on Bayesian estimation for the 5 and 8 parameter models. Since the likelihood does not exist in closed form, we apply approximate Bayesian computation, a likelihood free approach. Simulation studies have been carried out for the 5 and 8 parameter cases under various priors and tolerance levels. We apply the 5 parameter model to a real data set by allowing the model to serve as a prior to correlated proportions of a bivariate beta binomial model. Results and comparisons are then discussed.  相似文献   

19.
In this article, Bayesian approach is applied to estimate the parameters of Log-logistic distribution under reference prior and Jeffreys’ prior. The reference prior is derived and it is found that the reference prior is also a second-order matching priors as for the case of any parameter of interest. The Bayesian estimators cannot be obtained in explicit forms. Metropolis within Gibbs sampling algorithm is used to obtain the Bayesian estimators. The Bayesian estimates are compared with the maximum likelihood estimates via simulation study. A real dataset is considered for illustrative purposes.  相似文献   

20.
In this article, we develop an empirical Bayesian approach for the Bayesian estimation of parameters in four bivariate exponential (BVE) distributions. We have opted for gamma distribution as a prior for the parameters of the model in which the hyper parameters have been estimated based on the method of moments and maximum likelihood estimates (MLEs). A simulation study was conducted to compute empirical Bayesian estimates of the parameters and their standard errors. We use moment estimators or MLEs to estimate the hyper parameters of the prior distributions. Furthermore, we compare the posterior mode of parameters obtained by different prior distributions and the Bayesian estimates based on gamma priors are very close to the true values as compared to improper priors. We use MCMC method to obtain the posterior mean and compared the same using the improper priors and the classical estimates, MLEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号