首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hidden Markov models form an extension of mixture models which provides a flexible class of models exhibiting dependence and a possibly large degree of variability. We show how reversible jump Markov chain Monte Carlo techniques can be used to estimate the parameters as well as the number of components of a hidden Markov model in a Bayesian framework. We employ a mixture of zero-mean normal distributions as our main example and apply this model to three sets of data from finance, meteorology and geomagnetism.  相似文献   

2.
3.
A single-population Markovian stochastic epidemic model is defined so that the underlying social structure of the population is described by a Bernoulli random graph. The parameters of the model govern the rate of infection, the length of the infectious period, and the probability of social contact with another individual in the population. Markov chain Monte Carlo methods are developed to facilitate Bayesian inference for the parameters of both the epidemic model and underlying unknown social structure. The methods are applied in various examples of both illustrative and real-life data, with two different kinds of data structure considered.  相似文献   

4.
A stochastic epidemic model with several kinds of susceptible is used to analyse temporal disease outbreak data from a Bayesian perspective. Prior distributions are used to model uncertainty in the actual numbers of susceptibles initially present. The posterior distribution of the parameters of the model is explored via Markov chain Monte Carlo methods. The methods are illustrated using two datasets, and the results are compared where possible to results obtained by previous analyses.  相似文献   

5.
This article presents a new way of modeling time-varying volatility. We generalize the usual stochastic volatility models to encompass regime-switching properties. The unobserved state variables are governed by a first-order Markov process. Bayesian estimators are constructed by Gibbs sampling. High-, medium- and low-volatility states are identified for the Standard and Poor's 500 weekly return data. Persistence in volatility is explained by the persistence in the low- and the medium-volatility states. The high-volatility regime is able to capture the 1987 crash and overlap considerably with four U.S. economic recession periods.  相似文献   

6.
Two strategies that can potentially improve Markov Chain Monte Carlo algorithms are to use derivative evaluations of the target density, and to suppress random walk behaviour in the chain. The use of one or both of these strategies has been investigated in a few specific applications, but neither is used routinely. We undertake a broader evaluation of these techniques, with a view to assessing their utility for routine use. In addition to comparing different algorithms, we also compare two different ways in which the algorithms can be applied to a multivariate target distribution. Specifically, the univariate version of an algorithm can be applied repeatedly to one-dimensional conditional distributions, or the multivariate version can be applied directly to the target distribution.  相似文献   

7.
Differential Evolution (DE) is a simple genetic algorithm for numerical optimization in real parameter spaces. In a statistical context one would not just want the optimum but also its uncertainty. The uncertainty distribution can be obtained by a Bayesian analysis (after specifying prior and likelihood) using Markov Chain Monte Carlo (MCMC) simulation. This paper integrates the essential ideas of DE and MCMC, resulting in Differential Evolution Markov Chain (DE-MC). DE-MC is a population MCMC algorithm, in which multiple chains are run in parallel. DE-MC solves an important problem in MCMC, namely that of choosing an appropriate scale and orientation for the jumping distribution. In DE-MC the jumps are simply a fixed multiple of the differences of two random parameter vectors that are currently in the population. The selection process of DE-MC works via the usual Metropolis ratio which defines the probability with which a proposal is accepted. In tests with known uncertainty distributions, the efficiency of DE-MC with respect to random walk Metropolis with optimal multivariate Normal jumps ranged from 68% for small population sizes to 100% for large population sizes and even to 500% for the 97.5% point of a variable from a 50-dimensional Student distribution. Two Bayesian examples illustrate the potential of DE-MC in practice. DE-MC is shown to facilitate multidimensional updates in a multi-chain “Metropolis-within-Gibbs” sampling approach. The advantage of DE-MC over conventional MCMC are simplicity, speed of calculation and convergence, even for nearly collinear parameters and multimodal densities.  相似文献   

8.
ABSTRACT. We develop exact Markov chain Monte Carlo methods for discretely sampled, directly and indirectly observed diffusions. The qualification ‘exact’ refers to the fact that the invariant and limiting distribution of the Markov chains is the posterior distribution of the parameters free of any discretization error. The class of processes to which our methods directly apply are those which can be simulated using the most general to date exact simulation algorithm. The article introduces various methods to boost the performance of the basic scheme, including reparametrizations and auxiliary Poisson sampling. We contrast both theoretically and empirically how this new approach compares to irreducible high frequency imputation, which is the state‐of‐the‐art alternative for the class of processes we consider, and we uncover intriguing connections. All methods discussed in the article are tested on typical examples.  相似文献   

9.
Summary.  Gaussian Markov random-field (GMRF) models are frequently used in a wide variety of applications. In most cases parts of the GMRF are observed through mutually independent data; hence the full conditional of the GMRF, a hidden GMRF (HGMRF), is of interest. We are concerned with the case where the likelihood is non-Gaussian, leading to non-Gaussian HGMRF models. Several researchers have constructed block sampling Markov chain Monte Carlo schemes based on approximations of the HGMRF by a GMRF, using a second-order expansion of the log-density at or near the mode. This is possible as the GMRF approximation can be sampled exactly with a known normalizing constant. The Markov property of the GMRF approximation yields computational efficiency.The main contribution in the paper is to go beyond the GMRF approximation and to construct a class of non-Gaussian approximations which adapt automatically to the particular HGMRF that is under study. The accuracy can be tuned by intuitive parameters to nearly any precision. These non-Gaussian approximations share the same computational complexity as those which are based on GMRFs and can be sampled exactly with computable normalizing constants. We apply our approximations in spatial disease mapping and model-based geostatistical models with different likelihoods, obtain procedures for block updating and construct Metropolized independence samplers.  相似文献   

10.
This article presents a Bayesian approach to the regression analysis of truncated data, with a focus on zero-truncated counts from the Poisson distribution. The approach provides inference not only on the regression coefficients but also on the total sample size and the parameters of the covariate distribution. The theory is applied to some illegal immigrant data from The Netherlands. Several models are fitted with the aid of Markov chain Monte Carlo methods and assessed via posterior predictive p-values. Inferences are compared with those obtained elsewhere using other approaches.  相似文献   

11.
Due to the escalating growth of big data sets in recent years, new Bayesian Markov chain Monte Carlo (MCMC) parallel computing methods have been developed. These methods partition large data sets by observations into subsets. However, for Bayesian nested hierarchical models, typically only a few parameters are common for the full data set, with most parameters being group specific. Thus, parallel Bayesian MCMC methods that take into account the structure of the model and split the full data set by groups rather than by observations are a more natural approach for analysis. Here, we adapt and extend a recently introduced two-stage Bayesian hierarchical modeling approach, and we partition complete data sets by groups. In stage 1, the group-specific parameters are estimated independently in parallel. The stage 1 posteriors are used as proposal distributions in stage 2, where the target distribution is the full model. Using three-level and four-level models, we show in both simulation and real data studies that results of our method agree closely with the full data analysis, with greatly increased MCMC efficiency and greatly reduced computation times. The advantages of our method versus existing parallel MCMC computing methods are also described.  相似文献   

12.
We define a notion of de-initializing Markov chains. We prove that to analyse convergence of Markov chains to stationarity, it suffices to analyse convergence of a de-initializing chain. Applications are given to Markov chain Monte Carlo algorithms and to convergence diagnostics.  相似文献   

13.
A Bayesian analysis is presented of a time series which is the sum of a stationary component with a smooth spectral density and a deterministic component consisting of a linear combination of a trend and periodic terms. The periodic terms may have known or unknown frequencies. The advantage of our approach is that different features of the data—such as the regression parameters, the spectral density, unknown frequencies and missing observations—are combined in a hierarchical Bayesian framework and estimated simultaneously. A Bayesian test to detect deterministic components in the data is also constructed. By using an asymptotic approximation to the likelihood, the computation is carried out efficiently using the Markov chain Monte Carlo method in O ( Mn ) operations, where n is the sample size and M is the number of iterations. We show empirically that our approach works well on real and simulated samples.  相似文献   

14.
A non-homogeneous hidden Markov model for precipitation occurrence   总被引:9,自引:0,他引:9  
A non-homogeneous hidden Markov model is proposed for relating precipitation occurrences at multiple rain-gauge stations to broad scale atmospheric circulation patterns (the so-called 'downscaling problem'). We model a 15-year sequence of winter data from 30 rain stations in south-western Australia. The first 10 years of data are used for model development and the remaining 5 years are used for model evaluation. The fitted model accurately reproduces the observed rainfall statistics in the reserved data despite a shift in atmospheric circulation (and, consequently, rainfall) between the two periods. The fitted model also provides some useful insights into the processes driving rainfall in this region.  相似文献   

15.
It is now possible to carry out Bayesian image segmentation from a continuum parametric model with an unknown number of regions. However, few suitable parametric models exist. We set out to model processes which have realizations that are naturally described by coloured planar triangulations. Triangulations are already used, to represent image structure in machine vision, and in finite element analysis, for domain decomposition. However, no normalizable parametric model, with realizations that are coloured triangulations, has been specified to date. We show how this must be done, and in particular we prove that a normalizable measure on the space of triangulations in the interior of a fixed simple polygon derives from a Poisson point process of vertices. We show how such models may be analysed by using Markov chain Monte Carlo methods and we present two case-studies, including convergence analysis.  相似文献   

16.
Email marketing has been an increasingly important tool for today’s businesses. In this article, we propose a counting-process-based Bayesian method for quantifying the effectiveness of email marketing campaigns in conjunction with customer characteristics. Our model explicitly addresses the seasonality of data, accounts for the impact of customer characteristics on their purchasing behavior, and evaluates effects of email offers as well as their interactions with customer characteristics. Using the proposed method, together with a propensity-score-based unit-matching technique for alleviating potential confounding, we analyze a large email marketing dataset of an online ticket marketplace to evaluate the short- and long-term effectiveness of their email campaigns. It is shown that email offers can increase customer purchase rate both immediately and during a longer term. Customers’ characteristics such as length of shopping history, purchase recency, average ticket price, average ticket count, and number of genres purchased also affect customers’ purchase rate. A strong positive interaction is uncovered between email offer and purchase recency, suggesting that customers who have been inactive recently are more likely to take advantage of promotional offers. Supplementary materials for this article are available online.  相似文献   

17.
Summary. Reversible jump methods are the most commonly used Markov chain Monte Carlo tool for exploring variable dimension statistical models. Recently, however, an alternative approach based on birth-and-death processes has been proposed by Stephens for mixtures of distributions. We show that the birth-and-death setting can be generalized to include other types of continuous time jumps like split-and-combine moves in the spirit of Richardson and Green. We illustrate these extensions both for mixtures of distributions and for hidden Markov models. We demonstrate the strong similarity of reversible jump and continuous time methodologies by showing that, on appropriate rescaling of time, the reversible jump chain converges to a limiting continuous time birth-and-death process. A numerical comparison in the setting of mixtures of distributions highlights this similarity.  相似文献   

18.
Summary.  Likelihood inference for discretely observed Markov jump processes with finite state space is investigated. The existence and uniqueness of the maximum likelihood estimator of the intensity matrix are investigated. This topic is closely related to the imbedding problem for Markov chains. It is demonstrated that the maximum likelihood estimator can be found either by the EM algorithm or by a Markov chain Monte Carlo procedure. When the maximum likelihood estimator does not exist, an estimator can be obtained by using a penalized likelihood function or by the Markov chain Monte Carlo procedure with a suitable prior. The methodology and its implementation are illustrated by examples and simulation studies.  相似文献   

19.
Bandwidth plays an important role in determining the performance of nonparametric estimators, such as the local constant estimator. In this article, we propose a Bayesian approach to bandwidth estimation for local constant estimators of time-varying coefficients in time series models. We establish a large sample theory for the proposed bandwidth estimator and Bayesian estimators of the unknown parameters involved in the error density. A Monte Carlo simulation study shows that (i) the proposed Bayesian estimators for bandwidth and parameters in the error density have satisfactory finite sample performance; and (ii) our proposed Bayesian approach achieves better performance in estimating the bandwidths than the normal reference rule and cross-validation. Moreover, we apply our proposed Bayesian bandwidth estimation method for the time-varying coefficient models that explain Okun’s law and the relationship between consumption growth and income growth in the U.S. For each model, we also provide calibrated parametric forms of the time-varying coefficients. Supplementary materials for this article are available online.  相似文献   

20.
We consider the problem of estimating the maximum posterior probability (MAP) state sequence for a finite state and finite emission alphabet hidden Markov model (HMM) in the Bayesian setup, where both emission and transition matrices have Dirichlet priors. We study a training set consisting of thousands of protein alignment pairs. The training data is used to set the prior hyperparameters for Bayesian MAP segmentation. Since the Viterbi algorithm is not applicable any more, there is no simple procedure to find the MAP path, and several iterative algorithms are considered and compared. The main goal of the paper is to test the Bayesian setup against the frequentist one, where the parameters of HMM are estimated using the training data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号