共查询到20条相似文献,搜索用时 15 毫秒
1.
Paul P. Gallo 《统计学通讯:理论与方法》2013,42(9):973-983
For a general univariate “errors-in-variables” model, the maximum likelihood estimate of the parameter vector (assuming normality of the errors), which has been described in the literature, can be expressed in an alternative form. In this form, the estimate is computationally simpler, and deeper investigation of its properties is facilitated. In particular, w demonstrate that, under conditions a good deal less restrictive than those which have been previously assumed, the estimate is weakly consistent. 相似文献
2.
Sanjoy K. Sinha 《Revue canadienne de statistique》2009,37(2):219-234
In many applications of generalized linear mixed models to clustered correlated or longitudinal data, often we are interested in testing whether a random effects variance component is zero. The usual asymptotic mixture of chi‐square distributions of the score statistic for testing constrained variance components does not necessarily hold. In this article, the author proposes and explores a parametric bootstrap test that appears to be valid based on its estimated level of significance under the null hypothesis. Results from a simulation study indicate that the bootstrap test has a level much closer to the nominal one while the asymptotic test is conservative, and is more powerful than the usual asymptotic score test based on a mixture of chi‐squares. The proposed bootstrap test is illustrated using two sets of real‐life data obtained from clinical trials. The Canadian Journal of Statistics © 2009 Statistical Society of Canada 相似文献
3.
《Journal of Statistical Computation and Simulation》2012,82(18):3529-3543
ABSTRACTA frequently encountered statistical problem is to determine if the variability among k populations is heterogeneous. If the populations are measured using different scales, comparing variances may not be appropriate. In this case, comparing coefficient of variation (CV) can be used because CV is unitless. In this paper, a non-parametric test is introduced to test whether the CVs from k populations are different. With the assumption that the populations are independent normally distributed, the Miller test, Feltz and Miller test, saddlepoint-based test, log likelihood ratio test and the proposed simulated Bartlett-corrected log likelihood ratio test are derived. Simulation results show the extreme accuracy of the simulated Bartlett-corrected log likelihood ratio test if the model is correctly specified. If the model is mis-specified and the sample size is small, the proposed test still gives good results. However, with a mis-specified model and large sample size, the non-parametric test is recommended. 相似文献
4.
5.
Li Yan 《Statistics》2015,49(5):978-988
Empirical likelihood inference for generalized linear models with fixed and adaptive designs is considered. It is shown that the empirical log-likelihood ratio at the true parameters converges to the standard chi-square distribution. Furthermore, we obtain the maximum empirical likelihood estimate of the unknown parameter and the resulting estimator is shown to be asymptotically normal. Some simulations are conducted to illustrate the proposed method. 相似文献
6.
Nobuhiko Terui 《统计学通讯:理论与方法》2013,42(2):703-722
A small sample simultaneous testing method is proposed for nested linear regression model. The methodology is based on the generalized likelihood ratio test which is the large sample simultaneous testing method for general nested models. The proposed test is also used for model identification. 相似文献
7.
Yong Bao 《Econometric Reviews》2018,37(4):309-324
A compact analytical representation of the asymptotic covariance matrix, in terms of model parameters directly, of the quasi maximum likelihood estimator (QMLE) is derived in autoregressive moving average (ARMA) models with possible nonzero means and non-Gaussian error terms. For model parameters excluding the error variance, it is found that the Huber (1967) sandwich form for the asymptotic covariance matrix degenerates into the inverse of the associated information matrix. In comparison to the existing result that involves the second moments of some auxiliary variables for the case of zero-mean ARMA models, the analytical asymptotic covariance in this article has an advantage in that it can be conveniently estimated by plugging in the estimated model parameters directly. 相似文献
8.
This paper provides a general method of modifying a statistic of interest in such a way that the distribution of the modified statistic can be approximated by an arbitrary reference distribution to an order of accuracy of O(n -1/2) or even O(n -1). The reference distribution is usually the asymptotic distribution of the original statistic. We prove that the multiplication of the statistic by a suitable stochastic correction improves the asymptotic approximation to its distribution. This paper extends the results of the closely related paper by Cordeiro and Ferrari (1991) to cope with several other statistical tests. The resulting expression for the adjustment factor requires knowledge of the Edgeworth-type expansion to order O(n-1) for the distribution of the unmodified statistic. In practice its functional form involves some derivatives of the reference distribution. Certain difference between the cumulants of appropriate order in n of the unmodified statistic and those of its first-order approximation, and the unmodified statistic itself. Some applications are discussed. 相似文献
9.
10.
The analysis of linear functional relationships is considered. Expressions useful for the estimation of both unconstrained and con¬strained parameters are presented. The testing of hypotheses which consist of linear constraints on the parameters is discussed. Wald type and Wilks type test statistics and their asymptotic null dis¬tributions are derived. It appears that these test statistics are not asymptotically equivalent. 相似文献
11.
Estimation of two normal means with an order restriction is considered when a covariance matrix is known. It is shown that restricted maximum likelihood estimator (MLE) stochastically dominates both estimators proposed by Hwang and Peddada [Confidence interval estimation subject to order restrictions. Ann Statist. 1994;22(1):67–93] and Peddada et al. [Estimation of order-restricted means from correlated data. Biometrika. 2005;92:703–715]. The estimators are also compared under the Pitman nearness criterion and it is shown that the MLE is closer to ordered means than the other two estimators. Estimation of linear functions of ordered means is also considered and a necessary and sufficient condition on the coefficients is given for the MLE to dominate the other estimators in terms of mean squared error. 相似文献
12.
The authors show that for balanced data, the estimates of effects of interest and of their standard errors are unaffected when a covariate is removed from a multiplicative Poisson model. As they point out, this is not verified in the analogous linear model, nor in the logistic model. In the first case, only the estimated coefficients remain the same, while in the second case, both the estimated effects and their standard errors can change. 相似文献
13.
Variance estimation is a fundamental yet important problem in statistical modelling. In this paper, we propose jackknife empirical likelihood (JEL) methods for the error variance in a linear regression model. We prove that the JEL ratio converges to the standard chi-squared distribution. The asymptotic chi-squared properties for the adjusted JEL and extended JEL estimators are also established. Extensive simulation studies to compare the new JEL methods with the standard method in terms of coverage probability and interval length are conducted, and the simulation results show that our proposed JEL methods perform better than the standard method. We also illustrate the proposed methods using two real data sets. 相似文献
14.
Two methods for testing the equality of variances in straight lines regression with a change point are considered. One is likelihood ratio test and the other is Bayesian confidence interval, based on the highest posterior density for the ratio of variances, using non-informative priors. Methods are applied to the renal transplant data analyzed by Smith and Cook(1980) and Stephens(1994). 相似文献
15.
S. J. Welham & R. Thompson 《Journal of the Royal Statistical Society. Series B, Statistical methodology》1997,59(3):701-714
Likelihood ratio tests for fixed model terms are proposed for the analysis of linear mixed models when using residual maximum likelihood estimation. Bartlett-type adjustments, using an approximate decomposition of the data, are developed for the test statistics. A simulation study is used to compare properties of the test statistics proposed, with or without adjustment, with a Wald test. A proposed test statistic constructed by dropping fixed terms from the full fixed model is shown to give a better approximation to the asymptotic χ2 -distribution than the Wald test for small data sets. Bartlett adjustment is shown to improve the χ2 -approximation for the proposed tests substantially. 相似文献
16.
Gauss M. Cordeiro 《统计学通讯:理论与方法》2013,42(1):197-207
ABSTRACT In this article we derive finite-sample corrections in matrix notation for likelihood ratio and score statistics in extreme-value linear regression models. We consider three corrected score tests that perform better than the usual score test. We also derive general formulae for second-order biases of maximum likelihood estimates of the linear parameters. Some simulations are performed to compare the likelihood ratio and score statistics with their modified versions and to illustrate the bias correction. 相似文献
17.
Zhensheng Huang 《Journal of statistical planning and inference》2011,141(2):899-909
We consider statistical inference for partially linear single-index models (PLSIM) when some linear covariates are not observed, but ancillary variables are available. Based on the profile least-squared estimators of the unknowns, we study the testing problems for parametric components in the proposed models. It is to see whether the generalized likelihood ratio (GLR) tests proposed by Fan et al. (2001) are applicable to testing for the parametric components. We show that under the null hypothesis the proposed GLR statistics follow asymptotically the χ2-distributions with the scale constants and the degrees of freedom being independent of the nuisance parameters or functions, which is called the Wilks phenomenon. Simulated experiments are conducted to illustrate our proposed methodology. 相似文献
18.
It is well known that the testing of zero variance components is a non-standard problem since the null hypothesis is on the boundary of the parameter space. The usual asymptotic chi-square distribution of the likelihood ratio and score statistics under the null does not necessarily hold because of this null hypothesis. To circumvent this difficulty in balanced linear growth curve models, we introduce an appropriate test statistic and suggest a permutation procedure to approximate its finite-sample distribution. The proposed test alleviates the necessity of any distributional assumptions for the random effects and errors and can easily be applied for testing multiple variance components. Our simulation studies show that the proposed test has Type I error rate close to the nominal level. The power of the proposed test is also compared with the likelihood ratio test in the simulations. An application on data from an orthodontic study is presented and discussed. 相似文献
19.
On the wald,lagrangian multiplier and likelihood ratio tests when the information matrix is singular
Summary Modified formulas for the Wald and Lagrangian multiplier statistics are introduced and considered together with the likelihood
ratio statistics for testing a typical null hypothesisH
0 stated in terms of equality constraints. It is demonstrated, subject to known standard regularity conditions, that each of
these statistics and the known Wald statistic has the asymptotic chi-square distribution with degrees of freedom equal to
the number of equality constraints specified byH
0 whether the information matrix is singular or nonsingular. The results of this paper include a generalization of the results
of Sively (1959) concerning the equivalence of the Wald, Lagrange multiplier and likelihood ratio tests to the case of singular
information matrices. 相似文献
20.
In this paper we consider structural measurement error models within the elliptical family of distributions. We consider dependent and independent el? liptical models, each of which requires special treatment methodology. We discuss in each case estimation and hypothesis testing using maximum likelihood theory. As shown, most of the developments obtained under normal theory carries through to the dependent case. In the independent case, emphasis is placed on the ^-distribution, an important member of the elliptical family. Correcting likelihood ratio statistics in both cases is also of major interest. 相似文献