首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 864 毫秒
1.
An asymptotic theory for the improved estimation of kurtosis parameter vector is developed for multi-sample case using uncertain prior information (UPI) that several kurtosis parameters are the same. Meta-analysis is performed to obtain pooled estimator, as it is a statistical methodology for pooling quantitative evidence. Pooled estimator is a good choice when assumption of homogeneity holds but it becomes inconsistent as assumption violates, therefore pretest and Stein-type shrinkage estimators are proposed as they combine sample and nonsample information in a superior way. Asymptotic properties of suggested estimators are discussed and their risk comparisons are also mentioned.  相似文献   

2.
《统计学通讯:理论与方法》2012,41(13-14):2305-2320
We consider shrinkage and preliminary test estimation strategies for the matrix of regression parameters in multivariate multiple regression model in the presence of a natural linear constraint. We suggest a shrinkage and preliminary test estimation strategies for the parameter matrix. The goal of this article is to critically examine the relative performances of these estimators in the direction of the subspace and candidate subspace restricted type estimators. Our analytical and numerical results show that the proposed shrinkage and preliminary test estimators perform better than the benchmark estimator under candidate subspace and beyond. The methods are also applied on a real data set for illustrative purposes.  相似文献   

3.
The estimation of the reliability function of the Weibull lifetime model is considered in the presence of uncertain prior information (not in the form of prior distribution) on the parameter of interest. This information is assumed to be available in some sort of a realistic conjecture. In this article, we focus on how to combine sample and non-sample information together in order to achieve improved estimation performance. Three classes of point estimatiors, namely, the unrestricted estimator, the shrinkage estimator and shrinkage preliminary test estimator (SPTE) are proposed. Their asymptotic biases and mean-squared errors are derived and compared. The relative dominance picture of the estimators is presented. Interestingly, the proposed SPTE dominates the unrestricted estimator in a range that is wider than that of the usual preliminary test estimator. A small-scale simulation experiment is used to examine the small sample properties of the proposed estimators. Our simulation investigations have provided strong evidence that corroborates with asymptotic theory. The suggested estimation methods are applied to a published data set to illustrate the performance of the estimators in a real-life situation.  相似文献   

4.
This article considers the shrinkage estimation procedure in the Cox's proportional hazards regression model when it is suspected that some of the parameters may be restricted to a subspace. We have developed the statistical properties of the shrinkage estimators including asymptotic distributional biases and risks. The shrinkage estimators have much higher relative efficiency than the classical estimator, furthermore, we consider two penalty estimators—the LASSO and adaptive LASSO—and compare their relative performance with that of the shrinkage estimators numerically. A Monte Carlo simulation experiment is conducted for different combinations of irrelevant predictors and the performance of each estimator is evaluated in terms of simulated mean squared error. Simulation study shows that the shrinkage estimators are comparable to the penalty estimators when the number of irrelevant predictors in the model is relatively large. The shrinkage and penalty methods are applied to two real data sets to illustrate the usefulness of the procedures in practice.  相似文献   

5.
In this study, we consider the application of the James–Stein estimator for population means from a class of arbitrary populations based on ranked set sample (RSS). We consider a basis for optimally combining sample information from several data sources. We succinctly develop the asymptotic theory of simultaneous estimation of several means for differing replications based on the well-defined shrinkage principle. We showcase that a shrinkage-type estimator will have, under quadratic loss, a substantial risk reduction relative to the classical estimator based on simple random sample and RSS. Asymptotic distributional quadratic biases and risks of the shrinkage estimators are derived and compared with those of the classical estimator. A simulation study is used to support the asymptotic result. An over-riding theme of this study is that the shrinkage estimation method provides a powerful extension of its traditional counterpart for non-normal populations. Finally, we will use a real data set to illustrate the computation of the proposed estimators.  相似文献   

6.
ABSTRACT

This article addresses the problem of parameter estimation of the logistic regression model under subspace information via linear shrinkage, pretest, and shrinkage pretest estimators along with the traditional unrestricted maximum likelihood estimator and restricted estimator. We developed an asymptotic theory for the linear shrinkage and pretest estimators and compared their relative performance using the notion of asymptotic distributional bias and asymptotic quadratic risk. The analytical results demonstrated that the proposed estimation strategies outperformed the classical estimation strategies in a meaningful parameter space. Detailed Monte-Carlo simulation studies were conducted for different combinations and the performance of each estimation method was evaluated in terms of simulated relative efficiency. The results of the simulation study were in strong agreement with the asymptotic analytical findings. Two real-data examples are also given to appraise the performance of the estimators.  相似文献   

7.
In this article, we consider the median ranked set sampling estimation and test of hypothesis for the mean for symmetric distributions. We suggest some alternative estimation strategies for parameters based on shrinkage and pretest principles. It is advantageous to use the non-sample information in the estimation process to construct alternative estimations for the parameter of interest. In this article, large sample properties of the suggested estimators will be assessed numerically using computer simulation. The relative performance of the suggested estimators for moderate and large samples will also be simulated. For illustration purposes, the proposed methodology is applied using data collocated from the Pepsi Cola production company in Al-Khobar, Saudi Arabia.  相似文献   

8.
Shrinkage estimators are often obtained by adjusting the usual estimator towards a target subspace to which the true parameter might belong. However, meaningful reductions in risk below the usual estimator can typically be achieved in a very small part of the parameter space. In the multivariate-normal mean estimation problem, E. George, in a series of papers, showed how multiple-shrinkage estimators (data-weighted averages of several different shrinkage estimators) can attain substantial risk reductions in a large part of the parameter space. This paper extends the multiple-shrinkage results to the case of simultaneous estimation of the means of several one-parameter exponential families. Our results are developed by using an identity similar to that of Haff and Johnson (1986). A computer simulation is reported to indicate the magnitude of reductions in risk. Our results are also applied to the problem of how to choose appropriate component variables to combine before a suitable shrinkage estimator is considered.  相似文献   

9.
We consider one of the most fundamental of statistical problems, namely that of inference for the mean, standard deviation and coefficients of skewness and kurtosis of an unknown univariate distribution. Assuming the distributional form of the parent population to be unknown, we focus our attention on moment-based inference. As is well-known, the method of moments estimates of the population measures under consideration are the sample mean, standard deviation and coefficients of skewness and kurtosis. Despite being some of the most frequently used of all statistical summaries, it comes as a surprise to find that their full joint distribution has not previously been studied in the literature. We derive a very general theoretical result for the large-sample asymptotic joint distribution of the four estimators and use simulation to explore the validity of the result as a means of approximating the biases, variances and covariances of the estimators for finite sample sizes. The theoretical result is then used to obtain asymptotically distribution-free inferential procedures for the population measures of original interest. Specifically, we propose and investigate the efficacy of bias-corrected and non-bias-corrected methods for point estimation and confidence set construction. We also discuss the relevance of the developed methodology both as an end in itself and as an aid to model formulation.  相似文献   

10.
In this paper, we consider an estimation problem of the matrix of the regression coefficients in multivariate regression models with unknown change‐points. More precisely, we consider the case where the target parameter satisfies an uncertain linear restriction. Under general conditions, we propose a class of estimators that includes as special cases shrinkage estimators (SEs) and both the unrestricted and restricted estimator. We also derive a more general condition for the SEs to dominate the unrestricted estimator. To this end, we extend some results underlying the multidimensional version of the mixingale central limit theorem as well as some important identities for deriving the risk function of SEs. Finally, we present some simulation studies that corroborate the theoretical findings.  相似文献   

11.
In this article, we consider the problem of unbiased estimation of the distribution function of a two-parameter exponential population using order statistics based on a random sample from the population. We give necessary and sufficient conditions for the existence of an unbiased estimator based on an arbitrary set of order statistics and suggest unbiased estimators in some situations where unbiased estimators exist. A few properties of the suggested estimators for some special cases have also been discussed.  相似文献   

12.
The first step in statistical analysis is the parameter estimation. In multivariate analysis, one of the parameters of interest to be estimated is the mean vector. In multivariate statistical analysis, it is usually assumed that the data come from a multivariate normal distribution. In this situation, the maximum likelihood estimator (MLE), that is, the sample mean vector, is the best estimator. However, when outliers exist in the data, the use of sample mean vector will result in poor estimation. So, other estimators which are robust to the existence of outliers should be used. The most popular robust multivariate estimator for estimating the mean vector is S-estimator with desirable properties. However, computing this estimator requires the use of a robust estimate of mean vector as a starting point. Usually minimum volume ellipsoid (MVE) is used as a starting point in computing S-estimator. For high-dimensional data computing, the MVE takes too much time. In some cases, this time is so large that the existing computers cannot perform the computation. In addition to the computation time, for high-dimensional data set the MVE method is not precise. In this paper, a robust starting point for S-estimator based on robust clustering is proposed which could be used for estimating the mean vector of the high-dimensional data. The performance of the proposed estimator in the presence of outliers is studied and the results indicate that the proposed estimator performs precisely and much better than some of the existing robust estimators for high-dimensional data.  相似文献   

13.
In this paper, we consider the shrinkage and penalty estimation procedures in the linear regression model with autoregressive errors of order p when it is conjectured that some of the regression parameters are inactive. We develop the statistical properties of the shrinkage estimation method including asymptotic distributional biases and risks. We show that the shrinkage estimators have a significantly higher relative efficiency than the classical estimator. Furthermore, we consider the two penalty estimators: least absolute shrinkage and selection operator (LASSO) and adaptive LASSO estimators, and numerically compare their relative performance with that of the shrinkage estimators. A Monte Carlo simulation experiment is conducted for different combinations of inactive predictors and the performance of each estimator is evaluated in terms of the simulated mean-squared error. This study shows that the shrinkage estimators are comparable to the penalty estimators when the number of inactive predictors in the model is relatively large. The shrinkage and penalty methods are applied to a real data set to illustrate the usefulness of the procedures in practice.  相似文献   

14.
This paper investigates several semiparametric estimators of the dispersion parameter in the analysis of over- or underdispersed count data when there is no likelihood available. In the context of estimating the dispersion parameter, we consider the double-extended quasi-likelihood (DEQL), the pseudo-likelihood and the optimal quadratic estimating (OQE) equations method and compare them with the maximum likelihood method, the method of moments and the extended quasi-likelihood through simulation study. The simulation study shows that the estimator based on the DEQL has superior bias and efficiency property for moderate and large sample size, and for small sample size the estimator based on the OQE equations outperforms the other estimators. Three real-life data sets arising in biostatistical practices are analyzed, and the findings from these analyses are quite similar to what are found from the simulation study.  相似文献   

15.
In the context of estimating regression coefficients of an ill-conditioned binary logistic regression model, we develop a new biased estimator having two parameters for estimating the regression vector parameter β when it is subjected to lie in the linear subspace restriction Hβ = h. The matrix mean squared error and mean squared error (MSE) functions of these newly defined estimators are derived. Moreover, a method to choose the two parameters is proposed. Then, the performance of the proposed estimator is compared to that of the restricted maximum likelihood estimator and some other existing estimators in the sense of MSE via a Monte Carlo simulation study. According to the simulation results, the performance of the estimators depends on the sample size, number of explanatory variables, and degree of correlation. The superiority region of our proposed estimator is identified based on the biasing parameters, numerically. It is concluded that the new estimator is superior to the others in most of the situations considered and it is recommended to the researchers.  相似文献   

16.
In this paper, we consider the non-penalty shrinkage estimation method of random effect models with autoregressive errors for longitudinal data when there are many covariates and some of them may not be active for the response variable. In observational studies, subjects are followed over equally or unequally spaced visits to determine the continuous response and whether the response is associated with the risk factors/covariates. Measurements from the same subject are usually more similar to each other and thus are correlated with each other but not with observations of other subjects. To analyse this data, we consider a linear model that contains both random effects across subjects and within-subject errors that follows autoregressive structure of order 1 (AR(1)). Considering the subject-specific random effect as a nuisance parameter, we use two competing models, one includes all the covariates and the other restricts the coefficients based on the auxiliary information. We consider the non-penalty shrinkage estimation strategy that shrinks the unrestricted estimator in the direction of the restricted estimator. We discuss the asymptotic properties of the shrinkage estimators using the notion of asymptotic biases and risks. A Monte Carlo simulation study is conducted to examine the relative performance of the shrinkage estimators with the unrestricted estimator when the shrinkage dimension exceeds two. We also numerically compare the performance of the shrinkage estimators to that of the LASSO estimator. A longitudinal CD4 cell count data set will be used to illustrate the usefulness of shrinkage and LASSO estimators.  相似文献   

17.
The purpose of this paper is to consider the problem of statistical inference about a hazard rate function that is specified as the product of a parametric regression part and a non-parametric baseline hazard. Unlike Cox's proportional hazard model, the baseline hazard not only depends on the duration variable, but also on the starting date of the phenomenon of interest. We propose a new estimator of the regression parameter which allows for non-stationarity in the hazard rate. We show that it is asymptotically normal at root- n and that its asymptotic variance attains the information bound for estimation of the regression coefficient. We also consider an estimator of the integrated baseline hazard, and determine its asymptotic properties. The finite sample performance of our estimators are studied.  相似文献   

18.
In this paper, we consider the estimation problem of the weighted least absolute deviation (WLAD) regression parameter vector when there are some outliers or heavy-tailed errors in the response and the leverage points in the predictors. We propose the pretest and James–Stein shrinkage WLAD estimators when some of the parameters may be subject to certain restrictions. We derive the asymptotic risk of the pretest and shrinkage WLAD estimators and show that if the shrinkage dimension exceeds two, the asymptotic risk of the shrinkage WLAD estimator is strictly less than the unrestricted WLAD estimator. On the other hand, the risk of the pretest WLAD estimator depends on the validity of the restrictions on the parameters. Furthermore, we study the WLAD absolute shrinkage and selection operator (WLAD-LASSO) and compare its relative performance with the pretest and shrinkage WLAD estimators. A simulation study is conducted to evaluate the performance of the proposed estimators relative to that of the unrestricted WLAD estimator. A real-life data example using body fat study is used to illustrate the performance of the suggested estimators.  相似文献   

19.
In this paper, we consider James–Stein shrinkage and pretest estimation methods for time series following generalized linear models when it is conjectured that some of the regression parameters may be restricted to a subspace. Efficient estimation strategies are developed when there are many covariates in the model and some of them are not statistically significant. Statistical properties of the pretest and shrinkage estimation methods including asymptotic distributional bias and risk are developed. We investigate the relative performances of shrinkage and pretest estimators with respect to the unrestricted maximum partial likelihood estimator (MPLE). We show that the shrinkage estimators have a lower relative mean squared error as compared to the unrestricted MPLE when the number of significant covariates exceeds two. Monte Carlo simulation experiments were conducted for different combinations of inactive covariates and the performance of each estimator was evaluated in terms of its mean squared error. The practical benefits of the proposed methods are illustrated using two real data sets.  相似文献   

20.
This paper discusses the problem of statistical inference in multivariate linear regression models when the errors involved are non normally distributed. We consider multivariate t-distribution, a fat-tailed distribution, for the errors as alternative to normal distribution. Such non normality is commonly observed in working with many data sets, e.g., financial data that are usually having excess kurtosis. This distribution has a number of applications in many other areas of research as well. We use modified maximum likelihood estimation method that provides the estimator, called modified maximum likelihood estimator (MMLE), in closed form. These estimators are shown to be unbiased, efficient, and robust as compared to the widely used least square estimators (LSEs). Also, the tests based upon MMLEs are found to be more powerful than the similar tests based upon LSEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号