首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This article proposes a multivariate synthetic control chart for skewed populations based on the weighted standard deviation method. The proposed chart incorporates the weighted standard deviation method into the standard multivariate synthetic control chart. The standard multivariate synthetic chart consists of the Hotelling's T 2 chart and the conforming run length chart. The weighted standard deviation method adjusts the variance–covariance matrix of the quality characteristics and approximates the probability density function using several multivariate normal distributions. The proposed chart reduces to the standard multivariate synthetic chart when the underlying distribution is symmetric. In general, the simulation results show that the proposed chart performs better than the existing multivariate charts for skewed populations and the standard T 2 chart, in terms of false alarm rates as well as moderate and large mean shift detection rates based on the various degrees of skewnesses.  相似文献   

2.
This study extends the generally weighted moving average (GWMA) control chart by imitating the double exponentially weighted moving average (DEWMA) technique. The proposed chart is called the double generally weighted moving average (DGWMA) control chart. Simulation is employed to evaluate the average run length characteristics of the GWMA, DEWMA and DGWMA control charts. An extensive comparison of these control charts reveals that the DGWMA control chart with time-varying control limits is more sensitive than the GWMA and the DEWMA control charts for detecting medium shifts in the mean of a process when the shifts are between 0.5 and 1.5 standard deviations. Additionally, the GWMA control chart performs better when the mean shifts are below the 0.5 standard deviation, and the DEWMA control performs better when the mean shifts are above the 1.5 standard deviation. The design of the DGWMA control chart is also discussed.  相似文献   

3.
Multivariate exponential weighted moving average and cumulative sum charts are the most common memory type multivariate control charts. They make use of the present and past information to detect small shifts in the process parameter(s). In this article, we propose two new multivariate control charts using a mixed version of their design setups. The plotting statistics of the proposed charts are based on the cumulative sum of the multivariate exponentially weighted moving averages. The performances of these schemes are evaluated in terms of average run length. The proposals are compared with their existing counterparts, including HotellingT2, MCUSUM, MEWMA, and MC1 charts. An application example is also presented for practical considerations using a real dataset.  相似文献   

4.
In this article, we introduce a new multivariate cumulative sum chart, where the target mean shift is assumed to be a weighted sum of principal directions of the population covariance matrix. This chart provides an attractive performance in terms of average run length (ARL) for large-dimensional data and it also compares favorably to existing multivariate charts including Crosier's benchmark chart with updated values of the upper control limit and the associated ARL function. In addition, Monte Carlo simulations are conducted to assess the accuracy of the well-known Siegmund's approximation of the average ARL function when observations are normal distributed. As a byproduct of the article, we provide updated values of upper control limits and the associated ARL function for Crosier's multivariate CUSUM chart.  相似文献   

5.
A multivariate extension of the adaptive exponentially weighted moving average (AEWMA) control chart is proposed. The new multivariate scheme can detect small and large shifts in the process mean vector effectively. The proposed scheme can be viewed as a smooth combination of a multivariate exponentially weighted moving average (MEWMA) chart and a Shewhart χ2-chart. The optimal design of the proposed chart is given according to a pre-specified in-control average run length and two shift sizes; a small and large shift each measured in terms of the non centrality parameter. The signal resistance of the newly proposed multivariate chart is also given. Comparisons among the new chart, the MEWMA chart, and the combined Shewhart-MEWMA (S-MEWMA) chart in terms of the standard and worst-case average run length profiles are presented. In addition, the three charts are compared with respect to their worst-case signal resistance values. The proposed chart gives somewhat better worst-case ARL and signal resistance values than the competing charts. It also gives better standard ARL performance especially for moderate and large shifts. The effectiveness of our proposed chart is illustrated through an example with simulated data set.  相似文献   

6.
Simultaneous monitoring of the mean vector and covariance matrix in multivariate processes allows practitioners to avoid the inflated false alarm rate that results from using two independent control charts. In this paper, we extend exponentially weighted moving average semicircle and generally weighted moving average semicircle control charts to monitor the mean vector and covariance matrix of multivariate multiple linear regression profiles in Phase II simultaneously. These new control charts are compared with the existing control charts in the literature in terms of the average run length criterion. Finally, a case is considered to show the application of the proposed charts.  相似文献   

7.
The study proposed the average and range control charts by considering the generalized lambda distribution, the percentile-based method, and the weighted variance with left-right tail-weighted ratio for skewed populations. When the underlying distribution is Weibull, Burr, gamma, lognormal, or inverse Gaussian, the proposed control charts have Type I risks, which are closer to 0.27% of the normal distribution, and they do not rapidly vary with sample sizes and the shape of a distribution. Type II risks of the proposed control charts are closer to those of the exact charts than to those of the skewness correction and weighted variance charts.  相似文献   

8.
Robust control charts are useful in statistical process control (SPC) when there is limited knowledge about the underlying process distribution, especially for multivariate observations. This article develops a new robust and self-starting multivariate procedure based on multivariate Smirnov test (MST), which integrates a multivariate two-sample goodness-of-fit (GOF) test based on multivariate empirical distribution function (MEDF) and the change-point model. As expected, simulation results show that our proposed control chart is robust to nonnormally distributed data, and moreover, it is efficient in detecting process shifts, especially large shifts, which is one of the main drawbacks of most robust control charts in the literature. As it avoids the need for a lengthy data-gathering step, the proposed chart is particularly useful in start-up or short-run situations. Comparison results and a real data example show that our proposed chart has great potential for application.  相似文献   

9.
In this article, we propose a new control chart called the sum of squares generally weighted moving average (SS-GWMA) control chart to simultaneously detect both the increase and decrease in the mean and/or variability. This new scheme is compared with the sum of squares exponentially weighted moving average (SS-EWMA) control chart. A simulation study is conducted to show that SS-GWMA control charts outperform SS-EWMA charts, in terms of the average run length (ARL), standard deviation of run length (SDRL), and diagnostic abilities. The design of SS-GWMA control charts is also discussed.  相似文献   

10.
Non parametric control charts have received increasing attention in the field of statistical process control. This paper presents a non parametric double generally weighted moving average (DGWMA) sign chart for monitoring small deviations when the quality characteristics of a process are unknown. The statistical performance of the non parametric DGWMA sign chart is evaluated and compared with those of other charts, including the exponentially weighted moving average (EWMA), generally weighted moving average (GWMA), and double EWMA (DEWMA) sign charts. Simulation studies indicate that the non parametric DGWMA sign chart with a large design and median adjustment parameters is always more sensitive than other charts in detecting small changes.  相似文献   

11.
Standard multivariate control charts usually employ fixed sample sizes at equal sampling intervals to monitor a process. In this study, a multivariate exponential weighted moving average (MEWMA) chart with adaptive sample sizes is investigated. Performance measure of the adaptive-sample-size MEWMA chart is obtained through a Markov chain approach. The performance of the adaptive-sample-size MEWMA chart is compared with the fixed-sample-size control chart in terms of steady-state average run length for different magnitude of shifts in the process mean. It is shown that the adaptive-sample-size chart is more efficient than the fixed-sample-size MEWMA control chart in detecting shifts in the process mean.  相似文献   

12.
Control charts using repetitive group sampling have attracted a great deal of attention during the last few years. In the present article, we attempt to develop a control chart for the multivariate Poisson distribution using the repetitive group sampling scheme. In the proposed control chart, the monitoring statistic from the multivariate Poisson distribution has been used for the quick detection of the deteriorated process to avoid losses. The control coefficients have been estimated using the specified in-control average run lengths. The procedure of the proposed control chart has been explained by using the real-world example and a simulated data set. It has been observed that the proposed control chart is an efficient development for the quick detection of the nonrandom change in the manufacturing process.  相似文献   

13.
We propose a new nonparametric multivariate control chart that integrates a novelty score. The proposed control chart uses as its monitoring statistic a hybrid novelty score, calculated based on the distance to local observations as well as on the distance to the convex hull constructed by its neighbors. The control limits of the proposed control chart were established based on a bootstrap method. A rigorous simulation study was conducted to examine the properties of the proposed control chart under various scenarios and compare it with existing multivariate control charts in terms of average run length (ARL) performance. The simulation results showed that the proposed control chart outperformed both the parametric and nonparametric Hotelling's T 2 control charts, especially in nonnormal situations. Moreover, experimental results with real semiconductor data demonstrated the applicability and effectiveness of the proposed control chart. To increase the capability to detect small mean shift, we propose an exponentially weighted hybrid novelty score control chart. Simulation results indicated that exponentially weighted hybrid score charts outperformed the hybrid novelty score based control charts.  相似文献   

14.
In this article, we propose a new control chart called the maximum chi-square generally weighted moving average (MCSGWMA) control chart. This control chart can effectively combine two generally weighted moving average (GWMA) control charts into a single one and can detect both increases as well as decreases in the process mean and/or variability simultaneously. The average run length (ARL) characteristics of the MCSGWMA and maximum exponentially weighted moving average (MaxEWMA) charts are evaluated by performing computer simulations. The comparison of the ARLs shows that the MCSGWMA control chart performs better than the MaxEWMA control chart.  相似文献   

15.
16.
ABSTRACT

Profile monitoring is one of the new research areas in statistical process control. Most of the control charts in this area are designed with fixed sampling rate which makes the control chart slow in detecting small to moderate shifts. In order to improve the performance of the conventional fixed control charts, adaptive features are proposed in which, one or more design parameters vary during the process. In this paper the variable sample size feature of EWMA3 and MEWMA schemes are proposed for monitoring simple linear profiles. The EWMA3 method is based on the combination of three exponentially weighted moving average (EWMA) charts for monitoring three parameters of a simple linear profile separately and the Multivariate EWMA (MEWMA) chart is based on the using a single chart to monitor the coefficients and variance of a general linear profile. Also a two-sided control chart is proposed for monitoring the standard deviation in the EWMA3 method. The performance of the proposed charts is compared in terms of the average time to signal. Numerical examples show that using adaptive features increase the power of control charts in detecting the parameter shifts. Finally, the performance of the proposed variable sample size schemes is illustrated through a real case in the leather industry.  相似文献   

17.
The conventional Shewhart-type control chart is developed essentially on the central limit theorem. Thus, the Shewhart-type control chart performs particularly well when the observed process data come from a near-normal distribution. On the other hand, when the underlying distribution is unknown or non-normal, the sampling distribution of a parameter estimator may not be available theoretically. In this case, the Shewhart-type charts are not available. Thus, in this paper, we propose a parametric bootstrap control chart for monitoring percentiles when process measurements have an inverse Gaussian distribution. Through extensive Monte Carlo simulations, we investigate the behaviour and performance of the proposed bootstrap percentile charts. The average run lengths of the proposed percentage charts are investigated.  相似文献   

18.
The adaptive multivariate CUSUM (AMCUSUM) chart has received considerable attention because of its superior sensitivity against a range of mean shift sizes than that of the conventional non-adaptive multivariate CUSUM (MCUSUM) chart. Recently, weighted AMCUSUM (WAMCUSUM) charts with a fixed sampling interval (FSI) have been proposed, called the WAMCUSUM-FSI charts, which provide more sensitivity than the AMCUSUM-FSI charts. In this paper, we extend this work and propose WAMCUSUM charts with variable sampling interval (VSI), named the WAMCUSUM-VSI charts, for efficiently monitoring the mean of a multivariate normally distributed process. The Monte Carlo simulation method is used to compute the average time to signal (ATS) and the adjusted ATS (AATS) profiles of the existing and proposed charts. It is found that the WAMCUSUM-VSI charts perform substantially and nearly uniformly better than the WAMCUSUM-FSI charts in terms of the ATS and AATS performance criterion. An example is given to explain the implementation of the WAMCUSUM charts with fixed and VSIs.  相似文献   

19.
Phase I of control analysis requires large amount of data to fit a distribution and estimate the corresponding parameters of the process under study. However, when only individual observations are available, and no a priori knowledge exists, the presence of outliers can bias the analysis. A relatively recent and successful approach to address this situation is Tukey's Control Chart (TCC), a charting method that applies the Box Plot technique to estimate the control limits. This procedure has proven to be effective for symmetric distributions. However, when skewness is present the average run length performance diminishes significantly. This article proposes a modified version of TCC to consider skewness with minimum assumptions on the underlying distribution of observations. Using theoretical results and Monte Carlo simulation, the modified TCC is tested over several distributions proving a better representation of skewed populations, even in cases when only a limited number of observations are available.  相似文献   

20.
Nonparametric control charts are useful in statistical process control (SPC) when there is a lack of or limited knowledge about the underlying process distribution, especially when the process measurement is multivariate. This article develops a new multivariate SPC methodology for monitoring location parameter based on adapting a well-known nonparametric method, empirical likelihood (EL), to on-line sequential monitoring. The weighted version of EL ratio test is used to formulate the charting statistic by incorporating the exponentially weighted moving average control (EWMA) scheme, which results in a nonparametric counterpart of the classical multivariate EWMA (MEWMA). Some theoretical and numerical studies show that benefiting from using EL, the proposed chart possesses some favorable features. First, it is a data-driven scheme and thus is more robust to various multivariate non-normal data than the MEWMA chart under the in-control (IC) situation. Second, it is transformation-invariant and avoids the estimation of covariance matrix from the historical data by studentizing internally, and hence its IC performance is less deteriorated when the number of reference sample is small. Third, in comparison with the existing approaches, it is more efficient in detecting small and moderate shifts for multivariate non-normal process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号