首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
The signal issued by a control chart triggers the process professionals to investigate the special cause. Change point methods simplify the efforts to search for and identify the special cause. In this study, using maximum likelihood estimation, a multivariate joint change point estimation procedure for monitoring both location and dispersion simultaneously is proposed. After a signal is generated by the simultaneously used Hotelling's T 2 and/or generalized variance control charts, the procedure starts detecting the time of the change. The performance of the proposed method for several structural changes for the mean vector and covariance matrix is discussed.  相似文献   

2.
Change point estimation procedures simplify the efforts to search for and identify special causes in multivariate statistical process monitoring. After a signal is generated by the simultaneously used control charts or a single control chart, add-on change point procedure estimates the time of the change. In this study, multivariate joint change point estimation performance for simultaneous monitoring of both location and dispersion is compared under the assumption that various single charts are used to monitor the process. The change detection performance for several structural changes for the mean vector and covariance matrix is also discussed. It is concluded that choice of the control chart to obtain a signal may affect the change point detection performance.  相似文献   

3.
In this article, we propose the two control charts, i.e. the ‘VMAX Group Runs’ (VMAX-GR) and ‘VMAX Modified Group Runs’ (VMAX-MGR) control charts based on the bivariate normal processes, for monitoring the covariance matrix. The proposed charts give the faster detection of a process change and have better diagnostic feature. It is verified that the VMAX-GR and the VMAX-MGR charts give a significant reduction in the out-of-control ‘Average Run Length’ (ARL) in the zero state, as well as in the steady state, as compared to the synthetic control chart based on the VMAX statistic and the generalized variance |S| chart.  相似文献   

4.
Recently, several new applications of control chart procedures for short production runs have been introduced. Bothe (1989) and Burr (1989) proposed the use of control chart statistics which are obtained by scaling the quality characteristic by target values or process estimates of a location and scale parameter. The performance of these control charts can be significantly affected by the use of incorrect scaling parameters, resulting in either an excessive "false alarm rate," or insensitivity to the detection of moderate shifts in the process. To correct for these deficiencies, Quesenberry (1990, 1991) has developed the Q-Chart which is formed from running process estimates of the sample mean and variance. For the case where both the process mean and variance are unknown, the Q-chaxt statistic is formed from the standard inverse Z-transformation of a t-statistic. Q-charts do not perform correctly, however, in the presence of special cause disturbances at process startup. This has recently been supported by results published by Del Castillo and Montgomery (1992), who recommend the use of an alternative control chart procedure which is based upon a first-order adaptive Kalman filter model Consistent with the recommendations by Castillo and Montgomery, we propose an alternative short run control chart procedure which is based upon the second order dynamic linear model (DLM). The control chart is shown to be useful for the early detection of unwanted process trends. Model and control chart parameters are updated sequentially in a Bayesian estimation framework, providing the greatest degree of flexibility in the level of prior information which is incorporated into the model. The result is a weighted moving average control chart statistic which can be used to provide running estimates of process capability. The average run length performance of the control chart is compared to the optimal performance of the exponentially weighted moving average (EWMA) chart, as reported by Gan (1991). Using a simulation approach, the second order DLM control chart is shown to provide better overall performance than the EWMA for short production run applications  相似文献   

5.
In this article we consider a control chart based on the sample variances of two quality characteristics. The points plotted on the chart correspond to the maximum value of these two statistics. The main reason to consider the proposed chart instead of the generalized variance | S | chart is its better diagnostic feature, that is, with the new chart it is easier to relate an out-of-control signal to the variables whose parameters have moved away from their in-control values. We study the control chart efficiency considering different shifts in the covariance matrix. In this way, we obtain the average run length (ARL) that measures the effectiveness of a control chart in detecting process shifts. The proposed chart always detects process disturbances faster than the generalized variance | S | chart. The same is observed when the size of the samples is variable, except in a few cases in which the size of the samples switches between small size and very large size.  相似文献   

6.
Statistical process control charts are used to distinguish between common cause and special cause sources of variability. Once a control chart signals, a search to find the special cause should be initiated. If process analysts had knowledge of the change point, the search to find the special cause could be easily facilitated. Relevant literature contains an array of solutions to the change-point problem; however, these solutions are most appropriate when the samples are assumed to be independent. Unfortunately, the assumption of independence is often violated in practice. This work considers one such case of non-independence that frequently occurs in practice as a result of multi-stage sampling. Due to its commonality in practice, we assume a two-stage nested random model as the underlying process model and derive and evaluate a maximum-likelihood estimator for the change point in the fixed-effects component of this model. The estimator is applied to electron microscopy data obtained following a genuine control chart signal and from a real machining process where the important quality characteristic is the size of the surface grains produced by the machining operation. We conduct a simulation study to compare relative performances between the proposed change-point estimator and a commonly used alternative developed under the assumption of independent observations. The results suggest that both estimators are approximately unbiased; however, the proposed estimator yields smaller variance. The implication is that the proposed estimator is more precise, and thus, the quality of the estimator is improved relative to the alternative.  相似文献   

7.
A common problem in multivariate general linear models is partially missing response data. The simplest method of analysis in the presence of missing data has been to delete all observations on any individual with any missing data(listwise deletion) and utilize a traditional complete data approach. However: this can result in a great loss of information: and perhaps inconsistencies in the estimation of the variance-covariance matrix. In the generalized multivariate analysis of variance(GMANOVA) model with missing data: Kleinbaum(1973) proposed an estimated generalized least squares approach. In order to apply this: however: a consistent estimate of the variance-covariance matrix is needed. Kleinbaum proposed an estimator which is unbiased and consistent: but it does not take advantage of the fact that the underlying model is GMANOVA and not MANOVA. Using the fact that the underlying model is GMANOVA we have constructed four other con¬sistent estimators. A Monte Carlo simulation experiment is conducted tto further examine how well these estimators compare to the estimator proposed by Kleinbaum.  相似文献   

8.
This article proposes a new chart with the generalized likelihood ratio (GLR) test statistics for monitoring the process variance of a normally distributed process. The new chart can be easily designed and constructed and the computation results show that it provides quite a satisfactory performance, including the detection of the decrease in the variance and the individual observation at the sampling point which are very important in many practical applications. Average run length (ARL) comparisons between other procedures and the new chart are presented. The optimal parameters that can be used as a design aid in selecting specific parameter values based on the ARL are described. The application of our proposed method is illustrated by a real data example from chemical process control.  相似文献   

9.
A variable sampling interval (VSI) feature is introduced to the multivariate synthetic generalized sample variance |S| control chart. This multivariate synthetic control chart is a combination of the |S| sub-chart and the conforming run length sub-chart. The VSI feature enhances the performance of the multivariate synthetic control chart. The comparative results show that the VSI multivariate synthetic control chart performs better than other types of multivariate control charts for detecting shifts in the covariance matrix of a multivariate normally distributed process. An example is given to illustrate the operation of the VSI multivariate synthetic chart.  相似文献   

10.
This article proposes a multivariate control chart, the syn-|S| chart, which comprises a standard |S| subchart and a multivariate synthetic sample generalized variance |S| (synthetic |S|) subchart, for detecting shifts in the covariance matrix of a multivariate normally distributed process. A procedure for the optimal design of the syn-|S| chart by minimizing the average extra quadratic loss is provided. The syn-|S| chart has better overall performance compared to the synthetic |S| chart and the standard |S| chart, based on the zero-state and steady-state modes. An example is given to illustrate the operation of the synthetic |S| chart.  相似文献   

11.
The multivariate synthetic generalized sample variance |S| (synthetic |S|) chart is a combination of the |S| sub-chart and the conforming run length sub-chart. A procedure for optimal designs of the synthetic |S| chart, based on the median run length (MRL), for both zero and steady-state modes are provided by minimizing the out-of-control MRL. The comparative results show that the synthetic |S| chart performs better than the standard |S| chart for detecting shifts in the covariance matrix of a multivariate normally distributed process, in terms of the MRL. An example is given to illustrate the operation of the synthetic |S| chart.  相似文献   

12.
The most common charting procedure used for monitoring the variance of the distribution of a quality characteristic is the S control chart. As a Shewhart-type control chart, it is relatively insensitive in the quick detection of small and moderate shifts in process variance. The performance of the S chart can be improved by supplementing it with runs rules or by varying the sample size and the sampling interval. In this work, we introduce and study one-sided adaptive S control charts, supplemented or not with one powerful runs rule, for detecting increases or decreases in process variation. The properties of the proposed control schemes are obtained by using a Markov chain approach. Furthermore, a practical guidance for the choice of the most suitable control scheme is also provided.  相似文献   

13.
ABSTRACT

Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much service data come from a process with variables having non-normal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, should not be properly used in such circumstances. In this paper, we propose a new variance chart based on a simple statistic to monitor process variance shifts. We explore the sampling properties of the new monitoring statistic and calculate the average run lengths (ARLs) of the proposed variance chart. Furthermore, an arcsine transformed exponentially weighted moving average (EWMA) chart is proposed because the ARLs of this modified chart are more intuitive and reasonable than those of the variance chart. We compare the out-of-control variance detection performance of the proposed variance chart with that of the non-parametric Mood variance (NP-M) chart with runs rules, developed by Zombade and Ghute [Nonparametric control chart for variability using runs rules. Experiment. 2014;24(4):1683–1691], and the nonparametric likelihood ratio-based distribution-free exponential weighted moving average (NLE) chart and the combination of traditional exponential weighted moving average (EWMA) mean and EWMA variance (CEW) control chart proposed by Zou and Tsung [Likelihood ratio-based distribution-free EWMA control charts. J Qual Technol. 2010;42(2):174–196] by considering cases in which the critical quality characteristic has a normal, a double exponential or a uniform distribution. Comparison results showed that the proposed chart performs better than the NP-M with runs rules, and the NLE and CEW control charts. A numerical example of service times with a right-skewed distribution from a service system of a bank branch in Taiwan is used to illustrate the application of the proposed variance chart and of the arcsine transformed EWMA chart and to compare them with three existing variance (or standard deviation) charts. The proposed charts show better detection performance than those three existing variance charts in monitoring and detecting shifts in the process variance.  相似文献   

14.
This article extends the generally weighted moving average (GWMA) technique for detecting changes in process variance. The proposed chart is called the generally weighted moving average variance (GWMAV) chart. Simulation is employed to evaluate the average run length (ARL) characteristics of the GWMAV and EWMA control charts. An extensive comparison of these control charts reveals that the GWMAV chart is more sensitive than the EWMA control charts for detecting small shifts in the variance of a process when the shifts are below 1.35 standard deviations. Additionally, the GWMAV control chart performs little better when the variance shifts are between 1.35 and 1.5 standard deviation, and the 2 charts performs similar when the variance shifts are above 1.5 standard deviation. The design of the GWMAV chart is also discussed.  相似文献   

15.
The seemingly unrelated regression model is viewed in the context of repeated measures analysis. Regression parameters and the variance-covariance matrix of the seemingly unrelated regression model can be estimated by using two-stage Aitken estimation. The first stage is to obtain a consistent estimator of the variance-covariance matrix. The second stage uses this matrix to obtain the generalized least squares estimators of the regression parameters. The maximum likelihood (ML) estimators of the regression parameters can be obtained by performing the two-stage estimation iteratively. The iterative two-stage estimation procedure is shown to be equivalent to the EM algorithm (Dempster, Laird, and Rubin, 1977) proposed by Jennrich and Schluchter (1986) and Laird, Lange, and Stram (1987) for repeated measures data. The equivalence of the iterative two-stage estimator and the ML estimator has been previously demonstrated empirically in a Monte Carlo study by Kmenta and Gilbert (1968). It does not appear to be widely known that the two estimators are equivalent theoretically. This paper demonstrates this equivalence.  相似文献   

16.
The process personnel always seek the opportunity to improve the processes. One of the essential steps for process improvement is to quickly recognize the starting time or the change point of a process disturbance. The proposed approach combines the X¯ control chart with the Bayesian estimation technique. We show that the control chart has some information about the change point and this information can be used to make an informative prior. Then two Bayes estimators corresponding to the informative and a non informative prior along with MLE are considered. Their efficiencies are compared through a series of simulations. The results show that the Bayes estimator with the informative prior is more accurate and more precise when the means of the process before and after the change point time are not too closed. In addition, the efficiency of the Bayes estimator with the informative prior increases as the change point goes away from the origin.  相似文献   

17.
A new S2 control chart is presented for monitoring the process variance by utilizing a repetitive sampling scheme. The double control limits called inner and outer control limits are proposed, whose coefficients are determined by considering the average run length (ARL) and the average sample number when the process is in control. The proposed control chart is compared with the existing Shewhart S2 control chart in terms of the ARLs. The result shows that the proposed control chart is more efficient than the existing control chart in detecting the process shift.  相似文献   

18.
In this paper, we study the effect of estimating the vector of means and the variance–covariance matrix on the performance of two of the most widely used multivariate cumulative sum (CUSUM) control charts, the MCUSUM chart proposed by Crosier [Multivariate generalizations of cumulative sum quality-control schemes, Technometrics 30 (1988), pp. 291–303] and the MC1 chart proposed by Pignatiello and Runger [Comparisons of multivariate CUSUM charts, J. Qual. Technol. 22 (1990), pp. 173–186]. Using simulation, we investigate and compare the in-control and out-of-control performances of the competing charts in terms of the average run length measure. The in-control and out-of-control performances of the competing charts deteriorate significantly if the estimated parameters are used with control limits intended for known parameters, especially when only a few Phase I samples are used to estimate the parameters. We recommend the use of the MC1 chart over that of the MCUSUM chart if the parameters are estimated from a small number of Phase I samples.  相似文献   

19.
In this paper we show that the maximum likelihood estimators of LD50 and the scale parameter in the logistic case are equivalent to the Spearman-Karber type of estimators, when the subsample sizes at each dose level are equal. We derive a simple expression for the asymptotic variance-covariance matrix of the estimators. We also obtain correction terms to the bias and the variance of the Spearman-Karber estimator of LD50. Using these we construct sequential fixed-width and risk-efficient procedures for LD50. Numerical calculations show that these procedures are simple to carry out and stop at fewer dose levels than those proposed earlier by Nanthakumar and Govindarajulu (1994, 1999).  相似文献   

20.
Control charts using repetitive group sampling have attracted a great deal of attention during the last few years. In the present article, we attempt to develop a control chart for the multivariate Poisson distribution using the repetitive group sampling scheme. In the proposed control chart, the monitoring statistic from the multivariate Poisson distribution has been used for the quick detection of the deteriorated process to avoid losses. The control coefficients have been estimated using the specified in-control average run lengths. The procedure of the proposed control chart has been explained by using the real-world example and a simulated data set. It has been observed that the proposed control chart is an efficient development for the quick detection of the nonrandom change in the manufacturing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号