首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
ABSTRACT

In the paper, we consider a natural estimator of the offspring mean of a branching process with non stationary immigration based on observation of population sizes and number of immigrating individuals to each generation. We demonstrate that using a central limit theorem for multiple sums of dependent random variables it is possible to derive asymptotic distributions for the estimator without prior knowledge about the behavior (criticality) of the reproduction process. Before the three cases of criticality have been considered separately. Assuming that the immigration mean and variance vary regularly, conditions guaranteeing the strong consistency of the proposed estimator is also derived.  相似文献   

2.
In this article, small sample properties of the maximum-likelihood estimator (m.l.e.) for the offspring distribution (pk) and its mean m are considered in the context of the simple branching process. A representation theorem is given for the m.l.e. of (Pk) from which the m.l.e. of m is obtained. The case where p0 + p1 + p2 = 1 is studied in detail: numerical results are given for the exact bias of these estimators as a function of the age of the process; a curve fitting analysis expresses the bias of m? as a function of the mean and the variance of the offspring distribution and finally an “approximate m.l.e.” for (pk) is given.  相似文献   

3.
Consider a Bienayme–Galton–Watson process with generation-dependent immigration, whose mean and variance vary regularly with non negative exponents α and β, respectively. We study the estimation problem of the offspring mean based on an observation of population sizes. We show that if β <2α, the conditional least squares estimator (CLSE) is strongly consistent. Conditions which are sufficient for the CLSE to be asymptotically normal will also be derived. The rate of convergence is faster than n ?1/2, which is not the case in the process with stationary immigration.  相似文献   

4.
Abstract

In this paper, using estimating function approach, a new optimal volatility estimator is introduced and based on the recursive form of the estimator a data-driven generalized EWMA model for value at risk (VaR) forecast is proposed. An appropriate data-driven model for volatility is identified by the relationship between absolute deviation and standard deviation for symmetric distributions with finite variance. It is shown that the asymptotic variance of the proposed volatility estimator is smaller than that of conventional estimators and is more appropriate for financial data with larger kurtosis. For IBM, Microsoft, Apple stocks and SP 500 index the proposed method is used to identify the model, estimate the volatility, and obtain minimum mean square error(MMSE) forecasts of VaR.  相似文献   

5.
Samples of size n are drawn from a finite population on each of two occasions. On the first occasion a variate x is measured, and on the second a variate y. In estimating the population mean of y, the variance of the best linear unbiased combination of means for matched and unmatched samples is itself minimized, with respect to the sampling design on the second occasion, by a certain degree of matching. This optimal allocation depends on the population correlation coefficient, which previous authors have assumed known. We estimate the correlation from an initial matched sample, then an approximately optimal allocation is completed and an estimator formed which, under a bivariate normal superpopulation model, has model expected mean square error equal, apart from an error of order n-2, to the minimum enjoyed by any linear, unbiased estimator.  相似文献   

6.
Abstract

In environmental monitoring and assessment, the main focus is to achieve observational economy and to collect data with unbiased, efficient and cost-effective sampling methods. Ranked set sampling (RSS) is one traditional method that is mostly used for accomplishing observational economy. In this article, we propose an unbiased sampling scheme, named paired double RSS (PDRSS) for estimating the population mean. We study the performance of the mean estimators under PDRSS based on perfect and imperfect rankings. It is shown that, for perfect ranking, the variance of the mean estimator under PDRSS is always less than the variance of mean estimator based on simple random sampling, paired RSS and RSS. The mean estimators under RSS, median RSS, PDRSS, and double RSS are also compared with the regression estimator of population mean based on SRS. The procedure is also illustrated with a case study using a real data set.  相似文献   

7.
Expressions are derived for the bias to order J-1 , the variance to order J-2 and the mean squared error to order J-2 of Berkson's minimum logit chi-squared estimator where J is the number of distinct design points. These moment approximations are numerically compared to Monte Carlo estimates of the true moments and the moment approximations of Amemiya (1980) which are appropriate when the “average” number of observations per design point is large. They are used to compare the mean squared error of the minimum logit chi-squared estimator to that of the maximum likelihood estimator and to investigate the effect of bias on confidence intenrals constructed using the minimum logit chi-squared estimator.  相似文献   

8.
Abstract

In the present article, an effort has been made to develop calibration estimators of the population mean under two-stage stratified random sampling design when auxiliary information is available at primary stage unit (psu) level. The properties of the developed estimators are derived in-terms of design based approximate variance and approximate consistent design based estimator of the variance. Some simulation studies have been conducted to investigate the relative performance of calibration estimator over the usual estimator of the population mean without using auxiliary information in two-stage stratified random sampling. Proposed calibration estimators have outperformed the usual estimator without using auxiliary information.  相似文献   

9.
Abstract

This article focuses on reducing the additional variance due to randomization of the responses. The idea of additive scrambling and its inverse has been used along with (i) split sample approach and (ii) double response approach. Specifically, our proposal is based on Gupta et al. (2006) randomized response model. We selected this model for improvement because it provides estimator of mean and sensitivity level of a sensitive variable and is better than all of its competitors proposed earlier to it and even Gupta et al. (2006) sensitivity estimator is better than that of Gupta et al. (2010). Our suggested estimators are unbiased estimators and perform better than Gupta et al. (2006) estimator. The issue of privacy protection is also discussed.  相似文献   

10.
Abstract

The asymptotic cumulants of the minimum phi-divergence estimators of the parameters in a model for categorical data are obtained up to the fourth order with the higher-order asymptotic variance under possible model misspecification. The corresponding asymptotic cumulants up to the third order for the studentized minimum phi-divergence estimator are also derived. These asymptotic cumulants, when a model is misspecified, depend on the form of the phi-divergence. Numerical illustrations with simulations are given for typical cases of the phi-divergence, where the maximum likelihood estimator does not necessarily give best results. Real data examples are shown using log-linear models for contingency tables.  相似文献   

11.
The branching structure of inflorescences of the cultivated strawberry ( Fragaria × ananassa Duch.) is very variable. This paper demonstrates that some aspects of this variability are well described by a simple stochastic model of branching that has two adjustable parameters. The model is shown to provide a good fit to data from a set of almost 700 inflorescences of the cultivar Elsanta, collected over two successive years. For one parameter the maximum likelihood estimator is a moment estimator which is fully efficient even if the detailed branching structure of the inflorescences is not recorded. This parameter provides a convenient summary of branching vigour. The maximum likelihood estimator of the second parameter must be determined iteratively and can be quite inefficient unless the full branching structure is recorded. The model demonstrates that branching structure is affected by the order in which inflorescences emerge on the plant.  相似文献   

12.
ABSTRACT

This article considers some different parameter estimation methods in logistic regression model. In order to overcome multicollinearity, the almost unbiased ridge-type principal component estimator is proposed. The scalar mean squared error of the proposed estimator is derived and its properties are investigated. Finally, a numerical example and a simulation study are presented to show the performance of the proposed estimator.  相似文献   

13.
A class of estimators of the variance σ1 2 of a normal population is introduced, by utilization the information in a sample from a second normal population with different mean and variance σ2 2, under the restriction that σ1 2?≤?σ2 2. Simulation results indicate that some members of this class are more efficient than the usual minimum variance unbiased estimator (MVUE) of σ1 2, Stein estimator and Mehta and Gurland estimator. The case of known and unknown means are considered.  相似文献   

14.
In this article we will consider the Neumann boundary-value problem for the nonlinear Helmholtz equation ? Δ?u + a?u = gexp?(u) + f0. We will assume that there exists the solution to our problem and this permits us to construct an unbiased estimator on the trajectories of certain branching processes. To do so, we apply Green’s formula and an elliptic mean value theorem. This allows us to derive a special integral equation that gives the value of the function u(x) at the point x, with its integral over the domain D and on boundary of the domain ?D = G. The solution of the problem in the form of a mathematical expectation of some random variable is also obtained. In accordance with the probabilistic representation, a branching process is constructed and an unbiased estimator of the solution of the problem is built on its trajectories. The derived unbiased estimator has finite variance. The proposed branching process has a finite average number of branches, and easily simulated. We provide numerical results based on numerical experiments carried out with these algorithms.  相似文献   

15.
ABSTRACT

In this paper, assuming that there exist omitted variables in the specified model, we analytically derive the exact formula for the mean squared error (MSE) of a heterogeneous pre-test (HPT) estimator whose components are the ordinary least squares (OLS) and feasible ridge regression (FRR) estimators. Since we cannot examine the MSE performance analytically, we execute numerical evaluations to investigate small sample properties of the HPT estimator, and compare the MSE performance of the HPT estimator with those of the FRR estimator and the usual OLS estimator. Our numerical results show that (1) the HPT estimator is more efficient when the model misspecification is severe; (2) the HPT estimator with the optimal critical value obtained under the correctly specified model can be safely used even when there exist omitted variables in the specified model.  相似文献   

16.

In this paper, we discuss an estimation problem of the mean in the inverse Gaussian distribution with a known coefficient of variation. Two types of linear estimators for the mean, the linear minimum variance unbiased estimator and the linear minimum mean squared error estimator, are constructed by using the squared error loss function and their properties are examined. It is observed that, for small samples the performance of the proposed estimators is better than that of the maximum likelihood estimator, when the coefficient of variation is large.  相似文献   

17.
ABSTRACT

This paper is concerned with the problem of estimation for the mean of the selected population from two normal populations with unknown means and common known variance in a Bayesian framework. The empirical Bayes estimator, when there are available additional observations, is derived and its bias and risk function are computed. The expected bias and risk of the empirical Bayes estimator and the intuitive estimator are compared. It is shown that the empirical Bayes estimator is asymptotically optimal and especially dominates the intuitive estimator in terms of Bayes risk, with respect to any normal prior. Also, the Bayesian correlation between the mean of the selected population (random parameter) and some interested estimators are obtained and compared.  相似文献   

18.
ABSTRACT

This article considers estimation of the error variance in a semiparametric regression model. The estimator, based on the semiparametric residuals, is shown to be consistent (with certain rate) for the error variance.  相似文献   

19.
Motivated by a real-life problem, we develop a Two-Stage Cluster Sampling with Ranked Set Sampling (TSCRSS) design in the second stage for which we derive an unbiased estimator of population mean and its variance. An unbiased estimator of the variance of mean estimator is also derived. It is proved that the TSCRSS is more efficient—in the sense of having smaller variance—than the conventional two-stage cluster simple random sampling in which the second-stage sampling is with replacement. Using a simulation study on a real-life population, we show that the TSCRSS is more efficient than the conventional two-stage cluster sampling when simple random sampling without replacement is used in both stages.  相似文献   

20.
Estimation of population parameters is considered by several statisticians when additional information such as coefficient of variation, kurtosis or skewness is known. Recently Wencheko and Wijekoon (Stat Papers 46:101–115, 2005) have derived minimum mean square error estimators for the population mean in one parameter exponential families when coefficient of variation is known. In this paper the results presented by Gleser and Healy (J Am Stat Assoc 71:977–981, 1976) and Arnholt and Hebert (, 2001) were generalized by considering T (X) as a minimal sufficient estimator of the parametric function g(θ) when the ratio t2=[ g(q) ]-2Var[ T(X ) ]{\tau^{2}=[ {g(\theta )} ]^{-2}{\rm Var}[ {T(\boldsymbol{X} )} ]} is independent of θ. Using these results the minimum mean square error estimator in a certain class for both population mean and variance can be obtained. When T (X) is complete and minimal sufficient, the ratio τ2 is called “WIJLA” ratio, and a uniformly minimum mean square error estimator can be derived for the population mean and variance. Finally by applying these results, the improved estimators for the population mean and variance of some distributions are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号