首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
The linearization or Taylor series variance estimator and jackknife linearization variance estimator are popular for poststratified point estimators. In this note we propose a simple second-order linearization variance estimator for the poststratified estimator of the population total in two-stage sampling, using the second-order Taylor series expansion. We investigate the properties of the proposed variance estimator and its modified version and their empirical performance through some simulation studies in comparison to the standard and jackknife linearization variance estimators. Simulation studies are carried out on both artificially generated data and real data.  相似文献   

2.
In RSS, the variance of observations in each ranked set plays an important role in finding an optimal design for unbalanced RSS and in inferring the population mean. The empirical estimator (i.e., the sample variance in a given ranked set) is most commonly used for estimating the variance in the literature. However, the empirical estimator does not use the information in the entire data over different ranked sets. Further, it is highly variable when the sample size is not large enough, as is typical in RSS applications. In this paper, we propose a plug-in estimator for the variance of each set, which is more efficient than the empirical one. The estimator uses a result in order statistics which characterizes the cumulative distribution function (CDF) of the rth order statistics as a function of the population CDF. We analytically prove the asymptotic normality of the proposed estimator. We further apply it to estimate the standard error of the RSS mean estimator. Both our simulation and empirical study show that our estimators consistently outperform existing methods.  相似文献   

3.
In this paper, we discuss the estimation of population characteristics using stratified random sampling in an infinite population framework, including ranked set sampling as a special case. The use of prior values is considered and the underlying distribution is assumed to be unknown. The estimator considered in each stratum is the weighted mean of the U-statistic and prior value. The optimum weight is obtained by minimizing the mean squared error of the estimator of the population characteristics, but it contains unknown parameters and those parameters are replaced with their estimates. Simulation results show the gains in efficiency of the proposed estimator, yielding gains of at least 1.2 times larger than the usual unbiased estimator under certain condition specified in the text. Guidelines for the usage of the proposed estimator are shown and an application to a real data set is provided.  相似文献   

4.
In this paper we consider the problem of unbiased estimation of the distribution function of an exponential population using order statistics based on a random sample. We present a (unique) unbiased estimator based on a single, say ith, order statistic and study some properties of the estimator for i = 2. We also indicate how this estimator can be utilized to obtain unbiased estimators when a few selected order statistics are available as well as when the sample is selected following an alternative sampling procedure known as ranked set sampling. It is further proved that for a ranked set sample of size two, the proposed estimator is uniformly better than the conventional nonparametric unbiased estimator, further, for a general sample size, a modified ranked set sampling procedure provides an unbiased estimator uniformly better than the conventional nonparametric unbiased estimator based on the usual ranked set sampling procedure.  相似文献   

5.
In this study, we consider the application of the James–Stein estimator for population means from a class of arbitrary populations based on ranked set sample (RSS). We consider a basis for optimally combining sample information from several data sources. We succinctly develop the asymptotic theory of simultaneous estimation of several means for differing replications based on the well-defined shrinkage principle. We showcase that a shrinkage-type estimator will have, under quadratic loss, a substantial risk reduction relative to the classical estimator based on simple random sample and RSS. Asymptotic distributional quadratic biases and risks of the shrinkage estimators are derived and compared with those of the classical estimator. A simulation study is used to support the asymptotic result. An over-riding theme of this study is that the shrinkage estimation method provides a powerful extension of its traditional counterpart for non-normal populations. Finally, we will use a real data set to illustrate the computation of the proposed estimators.  相似文献   

6.
In this paper, a new estimator combined estimator (CE) is proposed for estimating the finite population mean ¯ Y N in simple random sampling assuming a long-tailed symmetric super-population model. The efficiency and robustness properties of the CE is compared with the widely used and well-known estimators of the finite population mean ¯ Y N by Monte Carlo simulation. The parameter estimators considered in this study are the classical least squares estimator, trimmed mean, winsorized mean, trimmed L-mean, modified maximum-likelihood estimator, Huber estimator (W24) and the non-parametric Hodges–Lehmann estimator. The mean square error criteria are used to compare the performance of the estimators. We show that the CE is overall more efficient than the other estimators. The CE is also shown to be more robust for estimating the finite population mean ¯ Y N , since it is insensitive to outliers and to misspecification of the distribution. We give a real life example.  相似文献   

7.
Much of the small‐area estimation literature focuses on population totals and means. However, users of survey data are often interested in the finite‐population distribution of a survey variable and in the measures (e.g. medians, quartiles, percentiles) that characterize the shape of this distribution at the small‐area level. In this paper we propose a model‐based direct estimator (MBDE, Chandra and Chambers) of the small‐area distribution function. The MBDE is defined as a weighted sum of sample data from the area of interest, with weights derived from the calibrated spline‐based estimate of the finite‐population distribution function introduced by Harms and Duchesne, under an appropriately specified regression model with random area effects. We also discuss the mean squared error estimation of the MBDE. Monte Carlo simulations based on both simulated and real data sets show that the proposed MBDE and its associated mean squared error estimator perform well when compared with alternative estimators of the area‐specific finite‐population distribution function.  相似文献   

8.
We adapt the ratio estimation using ranked set sampling, suggested by Samawi and Muttlak (Biometr J 38:753–764, 1996), to the ratio estimator for the population mean, based on Prasad (Commun Stat Theory Methods 18:379–392, 1989), in simple random sampling. Theoretically, we show that the proposed ratio estimator for the population mean is more efficient than the ratio estimator, in Prasad (1989), in all conditions. In addition, we support this theoretical result with the aid of a numerical example.   相似文献   

9.
In this article, we propose a nonparametric estimator for percentiles of the time-to-failure distribution obtained from a linear degradation model using the kernel density method. The properties of the proposed kernel estimator are investigated and compared with well-known maximum likelihood and ordinary least squares estimators via a simulation technique. The mean squared error and the length of the bootstrap confidence interval are used as the basis criteria of the comparisons. The simulation study shows that the performance of the kernel estimator is acceptable as a general estimator. When the distribution of the data is assumed to be known, the maximum likelihood and ordinary least squares estimators perform better than the kernel estimator, while the kernel estimator is superior when the assumption of our knowledge of the data distribution is violated. A comparison among different estimators is achieved using a real data set.  相似文献   

10.
We consider the first-order Poisson autoregressive model proposed by McKenzie [Some simple models for discrete variate time series. Water Resour Bull. 1985;21:645–650] and Al-Osh and Alzaid [First-order integer valued autoregressive (INAR(1)) process. J Time Ser Anal. 1987;8:261–275], which may be suitable in situations where the time series data are non-negative and integer valued. We derive the second-order bias of the squared difference estimator [Weiß. Process capability analysis for serially dependent processes of Poisson counts. J Stat Comput Simul. 2012;82:383–404] for one of the parameters and show that this bias can be used to define a bias-reduced estimator. The behaviour of a modified conditional least-squares estimator is also studied. Furthermore, we access the asymptotic properties of the estimators here discussed. We present numerical evidence, based upon Monte Carlo simulation studies, showing that the here proposed bias-adjusted estimator outperforms the other estimators in small samples. We also present an application to a real data set.  相似文献   

11.
The problem of estimating the Poisson mean is considered based on the two samples in the presence of uncertain prior information (not in the form of distribution) that two independent random samples taken from two possibly identical Poisson populations. The parameter of interest is λ1 from population I. Three estimators, i.e. the unrestricted estimator, restricted estimator and preliminary test estimator are proposed. Their asymptotic mean squared errors are derived and compared; parameter regions have been found for which restricted and preliminary test estimators are always asymptotically more efficient than the classical estimator. The relative dominance picture of the estimators is presented. Maximum and minimum asymptotic efficiencies of the estimators relative to the classical estimator are tabulated. A max-min rule for the size of the preliminary test is also discussed. A Monte Carlo study is presented to compare the performance of the estimator with that of Kale and Bancroft (1967).  相似文献   

12.
We consider ridge regression with an intercept term under mixture experiments. We propose a new estimator which is shown to be a modified version of the Liu-type estimator. The so-called compound covariate estimator is applied to modify the Liu-type estimator. We then derive a formula of the total mean squared error (TMSE) of the proposed estimator. It is shown that the new estimator improves upon existing estimators in terms of the TMSE, and the performance of the new estimator is invariant under the change of the intercept term. We demonstrate the new estimator using a real dataset on mixture experiments.  相似文献   

13.
In this paper, we propose a new generalized regression estimator for the problem of estimating the population total using unequal probability sampling without replacement. A modified automated linearization approach is applied in order to transform the proposed estimator to estimate variance of population total. The variance and estimated value of the variance of the proposed estimator is investigated under a reverse framework assuming that the sampling fraction is negligible and there are equal response probabilities for all units. We prove that the proposed estimator is an asymptotically unbiased estimator and that it does not require a known or estimated response probability to function.  相似文献   

14.
It is well-known that when ranked set sampling (RSS) scheme is employed to estimate the mean of a population, it is more efficient than simple random sampling (SRS) with the same sample size. One can use a RSS analog of SRS regression estimator to estimate the population mean of Y using its concomitant variable X when they are linearly related. Unfortunately, the variance of this estimate cannot be evaluated unless the distribution of X is known. We investigate the use of resampling methods to establish confidence intervals for the regression estimation of the population mean. Simulation studies show that the proposed methods perform well in a variety of situations when the assumption of linearity holds, and decently well under mild non-linearity.  相似文献   

15.
Nonparametric methods, Theil's method and Hussain's method have been applied to simple linear regression problems for estimating the slope of the regression line.We extend these methods and propose a robust estimator to estimate the coefficient of a first order autoregressive process under various distribution shapes, A simulation study to compare Theil's estimator, Hus-sain's estimator, the least squares estimator, and the proposed estimator is also presented.  相似文献   

16.
In this study, we define the Horvitz-Thompson estimator of the population mean using the inclusion probabilities of a ranked set sample in a finite population setting. The second-order inclusion probabilities that are required to calculate the variance of the Horvitz-Thompson estimator were obtained. The Horvitz-Thompson estimator, using the inclusion probabilities of ranked set sample, tends to be more efficient than the classical ranked set sampling estimator especially in a positively skewed population with small sizes. Also, we present a real data example with the volatility of gasoline to illustrate the Horvitz-Thompson estimator based on ranked set sampling.  相似文献   

17.
In this paper, we suggest a class of estimators for estimating the population mean ? of the study variable Y using information on X?, the population mean of the auxiliary variable X using ranked set sampling envisaged by McIntyre [A method of unbiased selective sampling using ranked sets, Aust. J. Agric. Res. 3 (1952), pp. 385–390] and developed by Takahasi and Wakimoto [On unbiased estimates of the population mean based on the sample stratified by means of ordering, Ann. Inst. Statist. Math. 20 (1968), pp. 1–31]. The estimator reported by Kadilar et al. [Ratio estimator for the population mean using ranked set sampling, Statist. Papers 50 (2009), pp. 301–309] is identified as a member of the proposed class of estimators. The bias and the mean-squared error (MSE) of the proposed class of estimators are obtained. An asymptotically optimum estimator in the class is identified with its MSE formulae. To judge the merits of the suggested class of estimators over others, an empirical study is carried out.  相似文献   

18.
The present paper investigates the efficiency of the dual ratio estimator under the super population model with uncorrelated errors and a gamma-distributed auxiliary variabble. It is found that the dual ratio estimator is more efficient than the product estimator when the auxiliary variable has a gamma distribution with parameter greater than or equal to one, in the case when the regression is through the origin or when the product of intercept and slope is positive.  相似文献   

19.
Abstract

In environmental monitoring and assessment, the main focus is to achieve observational economy and to collect data with unbiased, efficient and cost-effective sampling methods. Ranked set sampling (RSS) is one traditional method that is mostly used for accomplishing observational economy. In this article, we propose an unbiased sampling scheme, named paired double RSS (PDRSS) for estimating the population mean. We study the performance of the mean estimators under PDRSS based on perfect and imperfect rankings. It is shown that, for perfect ranking, the variance of the mean estimator under PDRSS is always less than the variance of mean estimator based on simple random sampling, paired RSS and RSS. The mean estimators under RSS, median RSS, PDRSS, and double RSS are also compared with the regression estimator of population mean based on SRS. The procedure is also illustrated with a case study using a real data set.  相似文献   

20.
We extend the average derivatives estimator to the case of functionally dependent regressors. We show that the proposed estimator is consistent and has a limiting normal distribution. A consistent covariance matrix estimator for the proposed estimator is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号