首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Bivariate recurrent event data are observed when subjects are at risk of experiencing two different type of recurrent events. In this paper, our interest is to suggest statistical model when there is a substantial portion of subjects not experiencing recurrent events but having a terminal event. In a context of recurrent event data, zero events can be related with either the risk free group or a terminal event. For simultaneously reflecting both a zero inflation and a terminal event in a context of bivariate recurrent event data, a joint model is implemented with bivariate frailty effects. Simulation studies are performed to evaluate the suggested models. Infection data from AML (acute myeloid leukemia) patients are analyzed as an application.  相似文献   

2.
Recurrent event data are often encountered in longitudinal follow-up studies in many important areas such as biomedical science, econometrics, reliability, criminology and demography. Multiplicative marginal rates models have been used extensively to analyze recurrent event data, but often fail to fit the data adequately. In addition, the analysis is complicated by excess zeros in the data as well as the presence of a terminal event that precludes further recurrence. To address these problems, we propose a semiparametric model with an additive rate function and an unspecified baseline to analyze recurrent event data, which includes a parameter to accommodate excess zeros and a frailty term to account for a terminal event. Local likelihood procedure is applied to estimate the parameters, and the asymptotic properties of the estimators are established. A simulation study is conducted to evaluate the performance of the proposed methods, and an example of their application is presented on a set of tumor recurrent data for bladder cancer.  相似文献   

3.
ABSTRACT

Longitudinal data often arise in longitudinal follow-up studies, and there may exist a dependent terminal event such as death that stops the follow-up. In this article, we propose a new joint modeling for the analysis of longitudinal data with informative observation times via a dependent terminal event and two latent variables. Estimating equations are developed for parameter estimation, and asymptotic properties of the resulting estimators are established. In addition, a generalization of the joint model with time-varying coefficients for the longitudinal response variable is considered, and goodness-of-fit methods for assessing the adequacy of the model are also provided. The proposed method works well in our simulation studies, and is applied to a data set from a bladder cancer study.  相似文献   

4.
ABSTRACT

In many longitudinal studies, there may exist informative observation times and a dependent terminal event that stops the follow-up. In this paper, we propose a joint model for analysis of longitudinal data with informative observation times and a dependent terminal event via two latent variables. Estimation procedures are developed for parameter estimation, and asymptotic properties of the proposed estimators are derived. Simulation studies demonstrate that the proposed method performs well for practical settings. An application to a bladder cancer study is illustrated.  相似文献   

5.
In this article, an additive rate model is proposed for clustered recurrent event with a terminal event. The subjects are clustered by some property. For the clustered subjects, the recurrent event is precluded by the death. An estimating equation is developed for the model parameter and the baseline rate function. The asymptotic properties of the resulting estimators are established. In addition, a goodness-of-fit test is presented to assess the adequacy of the model. The finite-sample behavior of the proposed estimators is evaluated through simulation studies, and an application to a bladder cancer data is illustrated.  相似文献   

6.
Recurrent events data with a terminal event often arise in many longitudinal studies. Most of existing models assume multiplicative covariate effects and model the conditional recurrent event rate given survival. In this article, we propose a marginal additive rates model for recurrent events with a terminal event, and develop two procedures for estimating the model parameters. The asymptotic properties of the resulting estimators are established. In addition, some numerical procedures are presented for model checking. The finite-sample behavior of the proposed methods is examined through simulation studies, and an application to a bladder cancer study is also illustrated.  相似文献   

7.
Clinical trials often assess whether or not subjects have a disease at predetermined follow-up times. When the response of interest is a recurrent event, a subject may respond at multiple follow-up times over the course of the study. Alternatively, when the response of interest is an irreversible event, a subject is typically only observed until the time at which the response is first detected. However, some recent studies have recorded subjects responses at follow-up times after an irreversible event is initially observed. This study compares how existing models perform when failure time data are treated as recurrent events.  相似文献   

8.
During their follow-up, patients with cancer can experience several types of recurrent events and can also die. Over the last decades, several joint models have been proposed to deal with recurrent events with dependent terminal event. Most of them require the proportional hazard assumption. In the case of long follow-up, this assumption could be violated. We propose a joint frailty model for two types of recurrent events and a dependent terminal event to account for potential dependencies between events with potentially time-varying coefficients. For that, regression splines are used to model the time-varying coefficients. Baseline hazard functions (BHF) are estimated with piecewise constant functions or with cubic M-Splines functions. The maximum likelihood estimation method provides parameter estimates. Likelihood ratio tests are performed to test the time dependency and the statistical association of the covariates. This model was driven by breast cancer data where the maximum follow-up was close to 20 years.  相似文献   

9.
In medical studies we are often confronted with complex longitudinal data. During the follow-up period, which can be ended prematurely by a terminal event (e.g. death), a subject can experience recurrent events of multiple types. In addition, we collect repeated measurements from multiple markers. An adverse health status, represented by ‘bad’ marker values and an abnormal number of recurrent events, is often associated with the risk of experiencing the terminal event. In this situation, the missingness of the data is not at random and, to avoid bias, it is necessary to model all data simultaneously using a joint model. The correlations between the repeated observations of a marker or an event type within an individual are captured by normally distributed random effects. Because the joint likelihood contains an analytically intractable integral, Bayesian approaches or quadrature approximation techniques are necessary to evaluate the likelihood. However, when the number of recurrent event types and markers is large, the dimensionality of the integral is high and these methods are too computationally expensive. As an alternative, we propose a simulated maximum-likelihood approach based on quasi-Monte Carlo integration to evaluate the likelihood of joint models with multiple recurrent event types and markers.  相似文献   

10.
11.
In the past, many clinical trials have withdrawn subjects from the study when they prematurely stopped their randomised treatment and have therefore only collected ‘on‐treatment’ data. Thus, analyses addressing a treatment policy estimand have been restricted to imputing missing data under assumptions drawn from these data only. Many confirmatory trials are now continuing to collect data from subjects in a study even after they have prematurely discontinued study treatment as this event is irrelevant for the purposes of a treatment policy estimand. However, despite efforts to keep subjects in a trial, some will still choose to withdraw. Recent publications for sensitivity analyses of recurrent event data have focused on the reference‐based imputation methods commonly applied to continuous outcomes, where imputation for the missing data for one treatment arm is based on the observed outcomes in another arm. However, the existence of data from subjects who have prematurely discontinued treatment but remained in the study has now raised the opportunity to use this ‘off‐treatment’ data to impute the missing data for subjects who withdraw, potentially allowing more plausible assumptions for the missing post‐study‐withdrawal data than reference‐based approaches. In this paper, we introduce a new imputation method for recurrent event data in which the missing post‐study‐withdrawal event rate for a particular subject is assumed to reflect that observed from subjects during the off‐treatment period. The method is illustrated in a trial in chronic obstructive pulmonary disease (COPD) where the primary endpoint was the rate of exacerbations, analysed using a negative binomial model.  相似文献   

12.
Medical studies often involve semi-competing risks data, which consist of two types of events, namely terminal event and non-terminal event. Because the non-terminal event may be dependently censored by the terminal event, it is not possible to make inference on the non-terminal event without extra assumptions. Therefore, this study assumes that the dependence structure on the non-terminal event and the terminal event follows a copula model, and lets the marginal regression models of the non-terminal event and the terminal event both follow time-varying effect models. This study uses a conditional likelihood approach to estimate the time-varying coefficient of the non-terminal event, and proves the large sample properties of the proposed estimator. Simulation studies show that the proposed estimator performs well. This study also uses the proposed method to analyze AIDS Clinical Trial Group (ACTG 320).  相似文献   

13.
The recurrent-event setting, where the subjects experience multiple occurrences of the event of interest, are encountered in many biomedical applications. In analyzing recurrent event data, non informative censoring is often assumed for the implementation of statistical methods. However, when a terminating event such as death serves as part of the censoring mechanism, validity of the censoring assumption may be violated because recurrence can be a powerful risk factor for death. We consider joint modeling of recurrent event process and terminating event under a Bayesian framework in which a shared frailty is used to model the association between the intensity of the recurrent event process and the hazard of the terminating event. Our proposed model is implemented on data from a well-known cancer study.  相似文献   

14.
In many prospective clinical and biomedical studies, longitudinal biomarkers are repeatedly measured as health indicators to evaluate disease progression when patients are followed up over a period of time. Patient visiting times can be referred to as informative observation times if they are assumed to carry information in addition to that of the longitudinal biomarker measures alone. Irregular visiting times may reflect compliance with physician instruction, disease progression and symptom severity. When the follow-up time may be stopped by competing terminal events, it is possible that patient observation times may correlate with the competing terminal events themselves, thus making the observation times difficult to assess. To explicitly account for the impact of competing terminal events and dependent observation times on the longitudinal data analysis in the context of such complex data, we propose a joint model using latent random effects to describe the association among them. A likelihood-based approach is derived for statistical inference. Extensive simulation studies reveal that the proposed approach performs well for practical situations, and an analysis of patients with chronic kidney disease in a cohort study is presented to illustrate the proposed method.  相似文献   

15.
Recurrent events data are frequently encountered and could be stopped by a terminal event in clinical trials. It is of interest to assess the treatment efficacy simultaneously with respect to both the recurrent events and the terminal event in many applications. In this paper we propose joint covariate-adjusted score test statistics based on joint models of recurrent events and a terminal event. No assumptions on the functional form of the covariates are needed. Simulation results show that the proposed tests can improve the efficiency over tests based on covariate unadjusted model. The proposed tests are applied to the SOLVD data for illustration.  相似文献   

16.
17.
In biomedical studies, the event of interest is often recurrent and within-subject events cannot usually be assumed independent. In addition, individuals within a cluster might not be independent; for example, in multi-center or familial studies, subjects from the same center or family might be correlated. We propose methods of estimating parameters in two semi-parametric proportional rates/means models for clustered recurrent event data. The first model contains a baseline rate function which is common across clusters, while the second model features cluster-specific baseline rates. Dependence structures for patients-within-cluster and events-within-patient are both unspecified. Estimating equations are derived for the regression parameters. For the common baseline model, an estimator of the baseline mean function is proposed. The asymptotic distributions of the model parameters are derived, while finite-sample properties are assessed through a simulation study. Using data from a national organ failure registry, the proposed methods are applied to the analysis of technique failures among Canadian dialysis patients.  相似文献   

18.
Sun  Xiaowei  Ding  Jieli  Sun  Liuquan 《Lifetime data analysis》2020,26(3):471-492
Lifetime Data Analysis - Recurrent event data with a terminal event commonly arise in longitudinal follow-up studies. We use a weighted composite endpoint of all recurrent and terminal events to...  相似文献   

19.
Panel count data occur in many fields and a number of approaches have been developed. However, most of these approaches are for situations where there is no terminal event and the observation process is independent of the underlying recurrent event process unconditionally or conditional on the covariates. In this paper, we discuss a more general situation where the observation process is informative and there exists a terminal event which precludes further occurrence of the recurrent events of interest. For the analysis, a semiparametric transformation model is presented for the mean function of the underlying recurrent event process among survivors. To estimate the regression parameters, an estimating equation approach is proposed in which an inverse survival probability weighting technique is used. The asymptotic distribution of the proposed estimates is provided. Simulation studies are conducted and suggest that the proposed approach works well for practical situations. An illustrative example is provided. The Canadian Journal of Statistics 41: 174–191; 2013 © 2012 Statistical Society of Canada  相似文献   

20.
In HIV/AIDS study, the measurements viral load are often highly skewed and left-censored because of a lower detection limit. Furthermore, a terminal event (e.g., death) stops the follow-up process. The time to terminal event may be dependent on the viral load measurements. In this article, we present a joint analysis framework to model the censored longitudinal data with skewness and a terminal event process. The estimation is carried out by adaptive Gaussian quadrature techniques in SAS procedure NLMIXED. The proposed model is evaluated by a simulation study and is applied to the motivating Multicenter AIDS Cohort Study (MACS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号