首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exact confidence interval estimation for accelerated life regression models with censored smallest extreme value (or Weibull) data is often impractical. This paper evaluates the accuracy of approximate confidence intervals based on the asymptotic normality of the maximum likelihood estimator, the asymptotic X2distribution of the likelihood ratio statistic, mean and variance correction to the likelihood ratio statistic, and the so-called Bartlett correction to the likelihood ratio statistic. The Monte Carlo evaluations under various degrees of time censoring show that uncorrected likelihood ratio intervals are very accurate in situations with heavy censoring. The benefits of mean and variance correction to the likelihood ratio statistic are only realized with light or no censoring. Bartlett correction tends to result in conservative intervals. Intervals based on the asymptotic normality of maximum likelihood estimators are anticonservative and should be used with much caution.  相似文献   

2.
In this article, we establish several recurrence relations for the single and product moments of progressively Type-II right censored order statistics from a generalized logistic distribution. The use of these relations in a systematic manner allow us to compute all the means, variances, and covariances of progressively Type-II right censored order statistics from the generalized logistic distribution for all sample sizes n, effective sample sizes m, and all progressive censoring schemes (R1, …, Rm). These moments are then utilized to derive best linear unbiased estimators of the scale and location-scale parameters of the generalized logistic distribution. A comparison of these estimators with the maximum likelihood estimates is then made through Monte Carlo simulations. Finally, the best linear unbiased predictors of censored failure times is discussed briefly.  相似文献   

3.
The currently existing estimation methods and goodness-of-fit tests for the Cox model mainly deal with right censored data, but they do not have direct extension to other complicated types of censored data, such as doubly censored data, interval censored data, partly interval-censored data, bivariate right censored data, etc. In this article, we apply the empirical likelihood approach to the Cox model with complete sample, derive the semiparametric maximum likelihood estimators (SPMLE) for the Cox regression parameter and the baseline distribution function, and establish the asymptotic consistency of the SPMLE. Via the functional plug-in method, these results are extended in a unified approach to doubly censored data, partly interval-censored data, and bivariate data under univariate or bivariate right censoring. For these types of censored data mentioned, the estimation procedures developed here naturally lead to Kolmogorov-Smirnov goodness-of-fit tests for the Cox model. Some simulation results are presented.  相似文献   

4.
Maximum likelihood estimators of a Type-II extreme value distribution are derived from doubly censored samples. The asymptotic variances and covariances of the maximum likelihood estimators are discussed and these are numerically evaluated for different censoring proportions q1 = 0.0(0. l) (0.9) from below and q2 = 0.0 (0. l) (0.9- q1) from above. The asymptotic relative efficiencies of the parameter estimates revealed that lower order statistics are more important for estimating the parameters of Type-II extreme value distribution as compared to higher order statistics.  相似文献   

5.
The likelihood equations based on a progressively Type II censored sample from a Type I generalized logistic distribution do not provide explicit solutions for the location and scale parameters. We present a simple method of deriving explicit estimators by approximating the likelihood equations appropriately. We examine numerically the bias and variance of these estimators and show that these estimators are as efficient as the maximum likelihood estimators (MLEs). The probability coverages of the pivotal quantities (for location and scale parameters) based on asymptotic normality are shown to be unsatisfactory, especially when the effective sample size is small. Therefore we suggest using unconditional simulated percentage points of these pivotal quantities for the construction of confidence intervals. A wide range of sample sizes and progressive censoring schemes have been considered in this study. Finally, we present a numerical example to illustrate the methods of inference developed here.  相似文献   

6.
This paper suggests censored maximum likelihood estimators for the first‐ and second‐order parameters of a heavy‐tailed distribution by incorporating the second‐order regular variation into the censored likelihood function. This approach is different from the bias‐reduced maximum likelihood method proposed by Feuerverger and Hall in 1999. The paper derives the joint asymptotic limit for the first‐ and second‐order parameters under a weaker assumption. The paper also demonstrates through a simulation study that the suggested estimator for the first‐order parameter is better than the estimator proposed by Feuerverger and Hall although these two estimators have the same asymptotic variances.  相似文献   

7.
In biostatistical applications interest often focuses on the estimation of the distribution of time T between two consecutive events. If the initial event time is observed and the subsequent event time is only known to be larger or smaller than an observed monitoring time C, then the data conforms to the well understood singly-censored current status model, also known as interval censored data, case I. Additional covariates can be used to allow for dependent censoring and to improve estimation of the marginal distribution of T. Assuming a wrong model for the conditional distribution of T, given the covariates, will lead to an inconsistent estimator of the marginal distribution. On the other hand, the nonparametric maximum likelihood estimator of FT requires splitting up the sample in several subsamples corresponding with a particular value of the covariates, computing the NPMLE for every subsample and then taking an average. With a few continuous covariates the performance of the resulting estimator is typically miserable. In van der Laan, Robins (1996) a locally efficient one-step estimator is proposed for smooth functionals of the distribution of T, assuming nothing about the conditional distribution of T, given the covariates, but assuming a model for censoring, given the covariates. The estimators are asymptotically linear if the censoring mechanism is estimated correctly. The estimator also uses an estimator of the conditional distribution of T, given the covariates. If this estimate is consistent, then the estimator is efficient and if it is inconsistent, then the estimator is still consistent and asymptotically normal. In this paper we show that the estimators can also be used to estimate the distribution function in a locally optimal way. Moreover, we show that the proposed estimator can be used to estimate the distribution based on interval censored data (T is now known to lie between two observed points) in the presence of covariates. The resulting estimator also has a known influence curve so that asymptotic confidence intervals are directly available. In particular, one can apply our proposal to the interval censored data without covariates. In Geskus (1992) the information bound for interval censored data with two uniformly distributed monitoring times at the uniform distribution (for T has been computed. We show that the relative efficiency of our proposal w.r.t. this optimal bound equals 0.994, which is also reflected in finite sample simulations. Finally, the good practical performance of the estimator is shown in a simulation study. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
This paper deals with the problem of estimating the Pearson correlation coefficient when one variable is subject to left or right censoring. In parallel to the classical results on the Pearson correlation coefficient, we derive a workable formula, through tedious computation and intensive simplification, of the asymptotic variances of the maximum likelihood estimators in two cases: (1) known means and variances and (2) unknown means and variances. We illustrate the usefulness of the asymptotic results in experimental designs.  相似文献   

9.
Progressive Type-II hybrid censoring is a mixture of progressive Type-II and hybrid censoring schemes. In this paper, we discuss the statistical inference on Weibull parameters when the observed data are progressively Type-II hybrid censored. We derive the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the Weibull parameters. We then use the asymptotic distributions of the maximum likelihood estimators to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and also by using the Gibbs sampling procedure. Monte Carlo simulations are then performed for comparing the confidence intervals based on all those different methods. Finally, one data set is analyzed for illustrative purposes.  相似文献   

10.
Log-location-scale distributions are widely used parametric models that have fundamental importance in both parametric and semiparametric frameworks. The likelihood equations based on a Type II censored sample from location-scale distributions do not provide explicit solutions for the para-meters. Statistical software is widely available and is based on iterative methods (such as, Newton Raphson Algorithm, EM algorithm etc.), which require starting values near the global maximum. There are also many situations that the specialized software does not handle. This paper provides a method for determining explicit estimators for the location and scale parameters by approximating the likelihood function, where the method does not require any starting values. The performance of the proposed approximate method for the Weibull distribution and Log-Logistic distributions is compared with those based on iterative methods through the use of simulation studies for a wide range of sample size and Type II censoring schemes. Here we also examine the probability coverages of the pivotal quantities based on asymptotic normality. In addition, two examples are given.  相似文献   

11.
In the model of progressive type II censoring, point and interval estimation as well as relations for single and product moments are considered. Based on two-parameter exponential distributions, maximum likelihood estimators (MLEs), uniformly minimum variance unbiased estimators (UMVUEs) and best linear unbiased estimators (BLUEs) are derived for both location and scale parameters. Some properties of these estimators are shown. Moreover, results for single and product moments of progressive type II censored order statistics are presented to obtain recurrence relations from exponential and truncated exponential distributions. These relations may then be used to compute all the means, variances and covariances of progressive type II censored order statistics based on exponential distributions for arbitrary censoring schemes. The presented recurrence relations simplify those given by Aggarwala and Balakrishnan (1996)  相似文献   

12.
Abstract. We consider the problem of estimating the joint distribution function of the event time and a continuous mark variable when the event time is subject to interval censoring case 1 and the continuous mark variable is only observed in case the event occurred before the time of inspection. The non‐parametric maximum likelihood estimator in this model is known to be inconsistent. We study two alternative smooth estimators, based on the explicit (inverse) expression of the distribution function of interest in terms of the density of the observable vector. We derive the pointwise asymptotic distribution of both estimators.  相似文献   

13.
A hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes. We study the estimation of parameters of weighted exponential distribution based on Type-II hybrid censored data. By applying the EM algorithm, maximum likelihood estimators are evaluated. Using Fisher information matrix, asymptotic confidence intervals are provided. By applying Markov chain Monte Carlo techniques, Bayes estimators, and corresponding highest posterior density confidence intervals of parameters are obtained. Monte Carlo simulations are performed to compare the performances of the different methods, and one dataset is analyzed for illustrative purposes.  相似文献   

14.
ABSTRACT

We study the estimation of a hazard rate function based on censored data by non-linear wavelet method. We provide an asymptotic formula for the mean integrated squared error (MISE) of nonlinear wavelet-based hazard rate estimators under randomly censored data. We show this MISE formula, when the underlying hazard rate function and censoring distribution function are only piecewise smooth, has the same expansion as analogous kernel estimators, a feature not available for the kernel estimators. In addition, we establish an asymptotic normality of the nonlinear wavelet estimator.  相似文献   

15.
Discrete lifetime data are very common in engineering and medical researches. In many cases the lifetime is censored at a random or predetermined time and we do not know the complete survival time. There are many situations that the lifetime variable could be dependent on the time of censoring. In this paper we propose the dependent right censoring scheme in discrete setup when the lifetime and censoring variables have a bivariate geometric distribution. We obtain the maximum likelihood estimators of the unknown parameters with their risks in closed forms. The Bayes estimators as well as the constrained Bayes estimates of the unknown parameters under the squared error loss function are also obtained. We considered an extension to the case where covariates are present along with the data. Finally we provided a simulation study and an illustrative example with a real data.  相似文献   

16.
It is known that the maximum likelihood methods does not provide explicit estimators for the mean and standard deviation of the normal distribution based on Type II censored samples. In this paper we present a simple method of deriving explicit estimators by approximating the likelihood equations appropriately. We obtain the variances and covariance of these estimators. We also show that these estimators are almost as eficient as the maximum likelihood (ML) estimators and just as eficient as the best linear unbiased (BLU), and the modified maximum likelihood (MML) estimators. Finally, we illustrate this method of estimation by applying it to Gupta's and Darwin's data.  相似文献   

17.
This article derives explicit expressions for the asymptotic variances of the maximum likelihood and continuously-updated GMM estimators in models that may not satisfy the fundamental asset-pricing restrictions in population. The proposed misspecification-robust variance estimators allow the researcher to conduct valid inference on the model parameters even when the model is rejected by the data. While the results for the maximum likelihood estimator are only applicable to linear asset-pricing models, the asymptotic distribution of the continuously-updated GMM estimator is derived for general, possibly nonlinear, models. The large corrections in the asymptotic variances, that arise from explicitly incorporating model misspecification in the analysis, are illustrated using simulations and an empirical application.  相似文献   

18.
In the design of constant-stress life-testing experiments, the optimal allocation in a multi-level stress test with Type-I or Type-II censoring based on the Weibull regression model has been studied in the literature. Conventional Type-I and Type-II censoring schemes restrict our ability to observe extreme failures in the experiment and these extreme failures are important in the estimation of upper quantiles and understanding of the tail behaviors of the lifetime distribution. For this reason, we propose the use of progressive extremal censoring at each stress level, whereas the conventional Type-II censoring is a special case. The proposed experimental scheme allows some extreme failures to be observed. The maximum likelihood estimators of the model parameters, the Fisher information, and asymptotic variance–covariance matrices of the maximum likelihood estimates are derived. We consider the optimal experimental planning problem by looking at four different optimality criteria. To avoid the computational burden in searching for the optimal allocation, a simple search procedure is suggested. Optimal allocation of units for two- and four-stress-level situations is determined numerically. The asymptotic Fisher information matrix and the asymptotic optimal allocation problem are also studied and the results are compared with optimal allocations with specified sample sizes. Finally, conclusions and some practical recommendations are provided.  相似文献   

19.
M. Nussbaum 《Statistics》2013,47(2):173-198
For the problem of estimating a linear functional relation when the ratio of the error variances is known a general class of estimators is introduced. They include as special cases the instrumental variable and replication cases and some others. Conditions are given for consistency, asymptotic normality and asymptotic optimality within this class based on the variance of the limit distribution. Fisheb's lower bound for asymptotic variances is established, and under normality the asymptotically optimal estimators are shown to be best asymptotically normal. For an inhomogeneous linear relation only estimators which are invariant with respect to a translation of the origin are considered, and asymptotically optimal invariant and, under normality, best asymptotically normal invariant estimators are obtained. Several special cases are discussed.  相似文献   

20.
In estimating the proportion ‘cured’ after adjuvant treatment, a population of cancer patients can be assumed to be a mixture of two Gompertz subpopulations, those who will die of other causes with no evidence of disease relapse and those who will die of their primary cancer. Estimates of the parameters of the component dying of other causes can be obtained from census data, whereas maximum likelihood estimates for the proportion cured and for the parameters of the component of patients dying of cancer can be obtained from follow-up data.

This paper examines, through simulation of follow-up data, the feasibility of maximum likelihood estimation of a mixture of two Gompertz distributions when censoring occurs. Means, variances and mean square error of the maximum likelihood estimates and the estimated asymptotic variance-covariance matrix is obtained from the simulated samples. The relationship of these variances with sample size, proportion censored, mixing proportion and population parameters are considered.

Moderate sample size typical of cooperative trials yield clinically acceptable estimates. Both increasing sample size and decreasing proportion of censored data decreases variance and covariance of the unknown parameters. Useful results can be obtained with data which are as much as 50% censored. Moreover, if the sample size is sufficiently large, survival data which are as much as 70% censored can yield satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号