首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article primarily aims to put forward the linearized restricted ridge regression (LRRR) estimator in linear regression models. Two types of LRRR estimators are investigated under the PRESS criterion and the optimal LRRR estimators and the optimal restricted generalized ridge regression estimator are obtained. We apply the results to the Hald data and finally make a simulation study by using the method of McDonald and Galarneau.  相似文献   

2.
In this article, we aim to study the linearized ridge regression (LRR) estimator in a linear regression model motivated by the work of Liu (1993). The LRR estimator and the two types of generalized Liu estimators are investigated under the PRESS criterion. The method of obtaining the optimal generalized ridge regression (GRR) estimator is derived from the optimal LRR estimator. We apply the Hald data as a numerical example and then make a simulation study to show the main results. It is concluded that the idea of transforming the GRR estimator as a complicated function of the biasing parameters to a linearized version should be paid more attention in the future.  相似文献   

3.
In the multiple linear regression, multicollinearity and outliers are commonly occurring problems. They produce undesirable effects on the ordinary least squares estimator. Many alternative parameter estimation methods are available in the literature which deals with these problems independently. In practice, it may happen that the multicollinearity and outliers occur simultaneously. In this article, we present a new estimator called as Linearized Ridge M-estimator which combats the problem of simultaneous occurrence of multicollinearity and outliers. A real data example and a simulation study is carried out to illustrate the performance of the proposed estimator.  相似文献   

4.
In the context of ridge regression, the estimation of shrinkage parameter plays an important role in analyzing data. Many efforts have been put to develop the computation of risk function in different full-parametric ridge regression approaches using eigenvalues and then bringing an efficient estimator of shrinkage parameter based on them. In this respect, the estimation of shrinkage parameter is neglected for semiparametric regression model. Not restricted, but the main focus of this approach is to develop necessary tools for computing the risk function of regression coefficient based on the eigenvalues of design matrix in semiparametric regression. For this purpose the differencing methodology is applied. We also propose a new estimator for shrinkage parameter which is of harmonic type mean of ridge estimators. It is shown that this estimator performs better than all the existing ones for the regression coefficient. For our proposal, a Monte Carlo simulation study and a real dataset analysis related to housing attributes are conducted to illustrate the efficiency of shrinkage estimators based on the minimum risk and mean squared error criteria.  相似文献   

5.
6.
In this article, we introduce a new stochastic restricted estimator for the unknown vector parameter in the linear regression model when stochastic linear restrictions on the parameters hold. We show that the new estimator is a generalization of the ordinary mixed estimator (OME), Liu estimator (LE), ordinary ridge estimator (ORR), (k-d) class estimator, stochastic restricted Liu estimator (SRLE), and stochastic restricted ridge estimator (SRRE). Performance of the new estimator in comparison to other estimators in terms of the mean squares error matrix (MMSE) is examined. Numerical example from literature have been given to illustrate the results.  相似文献   

7.
This article analyzes the effects of multicollienarity on the maximum likelihood (ML) estimator for the Tobit regression model. Furthermore, a ridge regression (RR) estimator is proposed since the mean squared error (MSE) of ML becomes inflated when the regressors are collinear. To investigate the performance of the traditional ML and the RR approaches we use Monte Carlo simulations where the MSE is used as performance criteria. The simulated results indicate that the RR approach should always be preferred to the ML estimation method.  相似文献   

8.
In this article we introduce a modified restricted almost unbiased Liu estimator in linear regression model which satisfies the linear restrictions. The mean squared error matrix (MSEM) of the proposed estimator is derived and compared with the corresponding competitors in literature. Finally, a numerical example and a Monte Carlo simulation are given to illustrate some of the theoretical results.  相似文献   

9.
In this article, we propose two stochastic restricted principal components regression estimator by combining the approach followed in obtaining the ordinary mixed estimator and the principal components regression estimator in linear regression model. The performance of the two new estimators in terms of matrix MSE criterion is studied. We also give an example and a Monte Carlo simulation to show the theoretical results.  相似文献   

10.
This article is concerned with the parameter estimation in linear regression model. To overcome the multicollinearity problem, a new two-parameter estimator is proposed. This new estimator is a general estimator which includes the ordinary least squares (OLS) estimator, the ridge regression (RR) estimator, and the Liu estimator as special cases. Necessary and sufficient conditions for the superiority of the new estimator over the OLS, RR, Liu estimators, and the two-parameter estimator proposed by Ozkale and Kaciranlar (2007 Ozkale , M. R. , Kaciranlar , S. ( 2007 ). The restricted and unrestricted two-parameter estimators . Commun. Statist. Theor. Meth. 36 : 27072725 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) in the mean squared error matrix (MSEM) sense are derived. Furthermore, we obtain the estimators of the biasing parameters and give a numerical example to illustrate some of the theoretical results.  相似文献   

11.
In this article, the stochastic restricted almost unbiased ridge regression estimator and stochastic restricted almost unbiased Liu estimator are proposed to overcome the well-known multicollinearity problem in linear regression model. The quadratic bias and mean square error matrix of the proposed estimators are derived and compared. Furthermore, a numerical example and a Monte Carlo simulation are given to illustrate some of the theoretical results.  相似文献   

12.
In this article, we introduce two almost unbiased estimators for the vector of unknown parameters in a linear regression model when additional linear restrictions on the parameter vector are assumed to hold. Superiority of the two estimators under the mean squared error matrix (MSEM) is discussed. Furthermore, a numerical example and simulation study are given to illustrate some of the theoretical results.  相似文献   

13.
This short article mainly aims to introduce the notion of the non-diagonal-type estimator (NDTE) by means of the singular value decomposition theorem in the linear regression model to improve some classical linear estimators that can be called the diagonal-type estimators. We derive the optimal NDTE under the mean squared error criterion and its iterative version through matrix techniques. A simulation study is finally conducted to illustrate the theoretical results.  相似文献   

14.
This article is concerned with the problem of multicollinearity in the linear part of a seemingly unrelated semiparametric (SUS) model. It is also suspected that some additional non stochastic linear constraints hold on the whole parameter space. In the sequel, we propose semiparametric ridge and non ridge type estimators combining the restricted least squares methods in the model under study. For practical aspects, it is assumed that the covariance matrix of error terms is unknown and thus feasible estimators are proposed and their asymptotic distributional properties are derived. Also, necessary and sufficient conditions for the superiority of the ridge-type estimator over the non ridge type estimator for selecting the ridge parameter K are derived. Lastly, a Monte Carlo simulation study is conducted to estimate the parametric and nonparametric parts. In this regard, kernel smoothing and cross validation methods for estimating the nonparametric function are used.  相似文献   

15.
In this paper, we introduce two new classes of estimators called the stochastic restricted almost unbiased ridge-type principal component estimator (SRAURPCE) and the stochastic restricted almost unbiased Liu-type principal component estimator (SRAURPCE) to overcome the well-known multicollinearity problem in linear regression model. For the two cases when the restrictions are true and not true, necessary and sufficient conditions for the superiority of the proposed estimators are derived and compared, respectively. Furthermore, a Monte Carlo simulation study and a numerical example are given to illustrate the performance of the proposed estimators.  相似文献   

16.
In the presence of multicollinearity problem, ordinary least squares (OLS) estimation is inadequate. To circumvent this problem, two well-known estimation procedures often suggested are the unbiased ridge regression (URR) estimator given by Crouse et al. (1995 Crouse , R. , Jin , C. , Hanumara , R. ( 1995 ). Unbiased ridge estimation with prior information and ridge trace . Commun. Statist. Theor. Meth. 24 : 23412354 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) and the (r, k) class estimator given by Baye and Parker (1984 Baye , M. , Parker , D. ( 1984 ). Combining ridge and principal component regression: a money demand illustration . Commun. Statist. Theor. Meth. 13 : 197205 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]). In this article, we proposed a new class of estimators, namely modified (r, k) class ridge regression (MCRR) which includes the OLS, the URR, the (r, k) class, and the principal components regression (PCR) estimators. It is based on a criterion that combines the ideas underlying the URR and the PCR estimators. The standard properties of this new class estimator have been investigated and a numerical illustration is done. The conditions under which the MCRR estimator is better than the other two estimators have been investigated.  相似文献   

17.
18.
Liu (2003 Liu , K. ( 2003 ). Using Liu-Type estimator to combat collinearity . Commun. Statist. Theor. Meth. 32 ( 5 ): 10091020 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) proposed the Liu-Type estimator (LTE) to combat the well-known multicollinearity problem in linear regression. In this article, various better fitting characteristics of the LTE than those of the ordinary ridge regression estimator (Hoerl and Kennard, 1970 Hoerl , A. E. , Kennard , R. W. ( 1970 ). Ridge regression: Biased estimation for non-orthogonal problems . Technometrics 12 : 5567 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) are considered. In particular, we derived two methods to determine the parameter d for the LTE and find that the ridge parameter k could serve for regularization of an ill-conditioned design matrix, while the other parameter d could be used for tuning the fit quality. In addition, the coefficients of regression, coefficient of multiple determination, residual error variance, and generalized cross validation (GCV) of the prediction quality are very stable, and as the ridge parameter increases they eventually reach asymptotic levels, which produces robust regression models. Furthermore, a Monte Carlo evaluation of these features is also given to illustrate some of the theoretical results.  相似文献   

19.
The logistic regression model is used when the response variables are dichotomous. In the presence of multicollinearity, the variance of the maximum likelihood estimator (MLE) becomes inflated. The Liu estimator for the linear regression model is proposed by Liu to remedy this problem. Urgan and Tez and Mansson et al. examined the Liu estimator (LE) for the logistic regression model. We introduced the restricted Liu estimator (RLE) for the logistic regression model. Moreover, a Monte Carlo simulation study is conducted for comparing the performances of the MLE, restricted maximum likelihood estimator (RMLE), LE, and RLE for the logistic regression model.  相似文献   

20.
Özkale and Kaciranlar (2007 Özakle , M. R. , Kaciranlar , S. ( 2007 ). The restricted and unrestricted two-parameter estimators . Commun. Statist. Theor. Meth. 36 : 27072725 . [Google Scholar]) proposed a two-parameter estimator (TPE) for the unknown parameter vector in linear regression when exact restrictions are assumed to hold. In this article, under the assumption that the errors are not independent and identically distributed, we introduce a new estimator by combining the ideas underlying the mixed estimator (ME) and the two-parameter estimator when stochastic linear restrictions are assumed to hold. The new estimator is called the stochastic restricted two-parameter estimator (SRTPE) and necessary and sufficient conditions for the superiority of the SRTPE over the ME and TPE are derived by the mean squared error matrix (MSEM) criterion. Furthermore, selection of the biasing parameters is discussed and a numerical example is given to illustrate some of the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号