首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

K-means inverse regression was developed as an easy-to-use dimension reduction procedure for multivariate regression. This approach is similar to the original sliced inverse regression method, with the exception that the slices are explicitly produced by a K-means clustering of the response vectors. In this article, we propose K-medoids clustering as an alternative clustering approach for slicing and compare its performance to K-means in a simulation study. Although the two methods often produce comparable results, K-medoids tends to yield better performance in the presence of outliers. In addition to isolation of outliers, K-medoids clustering also has the advantage of accommodating a broader range of dissimilarity measures, which could prove useful in other graphical regression applications where slicing is required.  相似文献   

2.
The k-means procedure is probably one of the most common nonhierachical clustering techniques. From a theoretical point of view, it is related to the search for the k principal points of the underlying distribution. In this paper, the classification resulting from that procedure for k=2 is shown to be optimal under a balanced mixture of two spherically symmetric and homoscedastic distributions. Then, the classification efficiency of the 2-means rule is assessed using the second order influence function and compared to the classification efficiencies of Fisher and Logistic discriminations. Influence functions are also considered here to compare the robustness to infinitesimal contamination of the 2-means method w.r.t. the generalized 2-means technique.  相似文献   

3.
k-POD: A Method for k-Means Clustering of Missing Data   总被引:1,自引:0,他引:1  
The k-means algorithm is often used in clustering applications but its usage requires a complete data matrix. Missing data, however, are common in many applications. Mainstream approaches to clustering missing data reduce the missing data problem to a complete data formulation through either deletion or imputation but these solutions may incur significant costs. Our k-POD method presents a simple extension of k-means clustering for missing data that works even when the missingness mechanism is unknown, when external information is unavailable, and when there is significant missingness in the data.

[Received November 2014. Revised August 2015.]  相似文献   

4.
One of the most popular methods and algorithms to partition data to k clusters is k-means clustering algorithm. Since this method relies on some basic conditions such as, the existence of mean and finite variance, it is unsuitable for data that their variances are infinite such as data with heavy tailed distribution. Pitman Measure of Closeness (PMC) is a criterion to show how much an estimator is close to its parameter with respect to another estimator. In this article using PMC, based on k-means clustering, a new distance and clustering algorithm is developed for heavy tailed data.  相似文献   

5.
《统计学通讯:理论与方法》2012,41(16-17):3126-3137
This article proposes a permutation procedure for evaluating the performance of different classification methods. In particular, we focus on two of the most widespread and used classification methodologies: latent class analysis and k-means clustering. The classification performance is assessed by means of a permutation procedure which allows for a direct comparison of the methods, the development of a statistical test, and points out better potential solutions. Our proposal provides an innovative framework for the validation of the data partitioning and offers a guide in the choice of which classification procedure should be used  相似文献   

6.
We introduce the concept of snipping, complementing that of trimming, in robust cluster analysis. An observation is snipped when some of its dimensions are discarded, but the remaining are used for clustering and estimation. Snipped k-means is performed through a probabilistic optimization algorithm which is guaranteed to converge to the global optimum. We show global robustness properties of our snipped k-means procedure. Simulations and a real data application to optical recognition of handwritten digits are used to illustrate and compare the approach.  相似文献   

7.
In this work it is shown how the k-means method for clustering objects can be applied in the context of statistical shape analysis. Because the choice of the suitable distance measure is a key issue for shape analysis, the Hartigan and Wong k-means algorithm is adapted for this situation. Simulations on controlled artificial data sets demonstrate that distances on the pre-shape spaces are more appropriate than the Euclidean distance on the tangent space. Finally, results are presented of an application to a real problem of oceanography, which in fact motivated the current work.  相似文献   

8.
Representative points (RPs) are a set of points that optimally represents a distribution in terms of mean square error. When the prior data is location biased, the direct methods such as the k-means algorithm may be inefficient to obtain the RPs. In this article, a new indirect algorithm is proposed to search the RPs based on location-biased datasets. Such an algorithm does not constrain the parameter model of the true distribution. The empirical study shows that such algorithm can obtain better RPs than the k-means algorithm.  相似文献   

9.
In observational studies, unbalanced observed covariates between treatment groups often cause biased inferences on the estimation of treatment effects. Recently, generalized propensity score (GPS) has been proposed to overcome this problem; however, a practical technique to apply the GPS is lacking. This study demonstrates how clustering algorithms can be used to group similar subjects based on transformed GPS. We compare four popular clustering algorithms: k-means clustering (KMC), model-based clustering, fuzzy c-means clustering and partitioning around medoids based on the following three criteria: average dissimilarity between subjects within clusters, average Dunn index and average silhouette width under four various covariate scenarios. Simulation studies show that the KMC algorithm has overall better performance compared with the other three clustering algorithms. Therefore, we recommend using the KMC algorithm to group similar subjects based on the transformed GPS.  相似文献   

10.
A tutorial on spectral clustering   总被引:33,自引:0,他引:33  
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.  相似文献   

11.
The aim of this study is to assign weights w 1, …, w m to m clustering variables Z 1, …, Z m , so that k groups were uncovered to reveal more meaningful within-group coherence. We propose a new criterion to be minimized, which is the sum of the weighted within-cluster sums of squares and the penalty for the heterogeneity in variable weights w 1, …, w m . We will present the computing algorithm for such k-means clustering, a working procedure to determine a suitable value of penalty constant and numerical examples, among which one is simulated and the other two are real.  相似文献   

12.
We propose two probability-like measures of individual cluster-membership certainty that can be applied to a hard partition of the sample such as that obtained from the partitioning around medoids (PAM) algorithm, hierarchical clustering or k-means clustering. One measure extends the individual silhouette widths and the other is obtained directly from the pairwise dissimilarities in the sample. Unlike the classic silhouette, however, the measures behave like probabilities and can be used to investigate an individual’s tendency to belong to a cluster. We also suggest two possible ways to evaluate the hard partition using these measures. We evaluate the performance of both measures in individuals with ambiguous cluster membership, using simulated binary datasets that have been partitioned by the PAM algorithm or continuous datasets that have been partitioned by hierarchical clustering and k-means clustering. For comparison, we also present results from soft-clustering algorithms such as soft analysis clustering (FANNY) and two model-based clustering methods. Our proposed measures perform comparably to the posterior probability estimators from either FANNY or the model-based clustering methods. We also illustrate the proposed measures by applying them to Fisher’s classic dataset on irises.  相似文献   

13.
Cluster analysis is one of the most widely used method in statistical analyses, in which homogeneous subgroups are identified in a heterogeneous population. Due to the existence of the continuous and discrete mixed data in many applications, so far, some ordinary clustering methods such as, hierarchical methods, k-means and model-based methods have been extended for analysis of mixed data. However, in the available model-based clustering methods, by increasing the number of continuous variables, the number of parameters increases and identifying as well as fitting an appropriate model may be difficult. In this paper, to reduce the number of the parameters, for the model-based clustering mixed data of continuous (normal) and nominal data, a set of parsimonious models is introduced. Models in this set are extended, using the general location model approach, for modeling distribution of mixed variables and applying factor analyzer structure for covariance matrices. The ECM algorithm is used for estimating the parameters of these models. In order to show the performance of the proposed models for clustering, results from some simulation studies and analyzing two real data sets are presented.  相似文献   

14.

We propose two nonparametric Bayesian methods to cluster big data and apply them to cluster genes by patterns of gene–gene interaction. Both approaches define model-based clustering with nonparametric Bayesian priors and include an implementation that remains feasible for big data. The first method is based on a predictive recursion which requires a single cycle (or few cycles) of simple deterministic calculations for each observation under study. The second scheme is an exact method that divides the data into smaller subsamples and involves local partitions that can be determined in parallel. In a second step, the method requires only the sufficient statistics of each of these local clusters to derive global clusters. Under simulated and benchmark data sets the proposed methods compare favorably with other clustering algorithms, including k-means, DP-means, DBSCAN, SUGS, streaming variational Bayes and an EM algorithm. We apply the proposed approaches to cluster a large data set of gene–gene interactions extracted from the online search tool “Zodiac.”

  相似文献   

15.
Clustering algorithms like types of k-means are fast, but they are inefficient for shape clustering. There are some algorithms, which are effective, but their time complexities are too high. This paper proposes a novel heuristic to solve large-scale shape clustering. The proposed method is effective and it solves large-scale clustering problems in fraction of a second.  相似文献   

16.
Consider the multiple hypotheses testing problem controlling the generalized familywise error rate k-FWER, the probability of at least k false rejections. We propose a plug-in procedure based on the estimation of the number of true null hypotheses. Under the independence assumption of the p-values corresponding to the true null hypotheses, we first introduce the least favorable configuration (LFC) of k-FWER for Bonferroni-type plug-in procedure, then we construct a plug-in k-FWER-controlled procedure based on LFC. For dependent p-values, we establish the asymptotic k-FWER control under some mild conditions. Simulation studies suggest great improvement over generalized Bonferroni test and generalized Holm test.  相似文献   

17.
Although there is no shortage of clustering algorithms proposed in the literature, the question of the most relevant strategy for clustering compositional data (i.e. data whose rows belong to the simplex) remains largely unexplored in cases where the observed value is equal or close to zero for one or more samples. This work is motivated by the analysis of two applications, both focused on the categorization of compositional profiles: (1) identifying groups of co-expressed genes from high-throughput RNA sequencing data, in which a given gene may be completely silent in one or more experimental conditions; and (2) finding patterns in the usage of stations over the course of one week in the Velib' bicycle sharing system in Paris, France. For both of these applications, we make use of appropriately chosen data transformations, including the Centered Log Ratio and a novel extension called the Log Centered Log Ratio, in conjunction with the K-means algorithm. We use a non-asymptotic penalized criterion, whose penalty is calibrated with the slope heuristics, to select the number of clusters. Finally, we illustrate the performance of this clustering strategy, which is implemented in the Bioconductor package coseq, on both the gene expression and bicycle sharing system data.  相似文献   

18.
This article considers multiple hypotheses testing with the generalized familywise error rate k-FWER control, which is the probability of at least k false rejections. We first assume the p-values corresponding to the true null hypotheses are independent, and propose adaptive generalized Bonferroni procedure with k-FWER control based on the estimation of the number of true null hypotheses. Then, we assume the p-values are dependent, satisfying block dependence, and propose adaptive procedure with k-FWER control. Extensive simulations compare the performance of the adaptive procedures with different estimators.  相似文献   

19.
The k nearest neighbors (k-NN) classifier is one of the most popular methods for statistical pattern recognition and machine learning. In practice, the size k, the number of neighbors used for classification, is usually arbitrarily set to one or some other small numbers, or based on the cross-validation procedure. In this study, we propose a novel alternative approach to decide the size k. Based on a k-NN-based multivariate multi-sample test, we assign each k a permutation test based Z-score. The number of NN is set to the k with the highest Z-score. This approach is computationally efficient since we have derived the formulas for the mean and variance of the test statistic under permutation distribution for multiple sample groups. Several simulation and real-world data sets are analyzed to investigate the performance of our approach. The usefulness of our approach is demonstrated through the evaluation of prediction accuracies using Z-score as a criterion to select the size k. We also compare our approach to the widely used cross-validation approaches. The results show that the size k selected by our approach yields high prediction accuracies when informative features are used for classification, whereas the cross-validation approach may fail in some cases.  相似文献   

20.
The reconstruction of phylogenetic trees is one of the most important and interesting problems of the evolutionary study. There are many methods proposed in the literature for constructing phylogenetic trees. Each approach is based on different criteria and evolutionary models. However, the topologies of trees constructed from different methods may be quite different. The topological errors may be due to unsuitable criterions or evolutionary models. Since there are many tree construction approaches, we are interested in selecting a better tree to fit the true model. In this study, we propose an adjusted k-means approach and a misclassification error score criterion to solve the problem. The simulation study shows this method can select better trees among the potential candidates, which can provide a useful way in phylogenetic tree selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号