首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We extend nonparametric regression models with local linear least squares fitting using kernel weights to the case of linear and circular predictors. We derive the asymptotic properties of the conditional bias and variance of bivariate local linear least squares kernel estimators. A small simulation study and a real experiment are given.  相似文献   

3.
Abstract. The problem of estimating an unknown density function has been widely studied. In this article, we present a convolution estimator for the density of the responses in a nonlinear heterogenous regression model. The rate of convergence for the mean square error of the convolution estimator is of order n ?1 under certain regularity conditions. This is faster than the rate for the kernel density method. We derive explicit expressions for the asymptotic variance and the bias of the new estimator, and further a data‐driven bandwidth selector is proposed. We conduct simulation experiments to check the finite sample properties, and the convolution estimator performs substantially better than the kernel density estimator for well‐behaved noise densities.  相似文献   

4.
From the view of a geometric approach, we consider the problem of density estimation on the m-dimensional unit sphere by using the kernel method. The definition of the kernel estimator is motivated from the concept of the exponential map. This article shows that the asymptotic behavior of the estimator contains a geometric quantity (the sectional curvature) on the unit sphere. This implies that the behavior depends on whether the sectional curvature is positive or negative. Using observed data on normals to the orbital planes of long-period comets, numerical examples on the two-dimensional unit sphere are given.  相似文献   

5.
Research in the area of bandwidth selection was an active topic in the 1980s and 1990s, however, recently there has been little research in the area. We re-opened this investigation and have found a new method for estimating mean integrated squared error for kernel density estimators. We provide an overview of other methods to obtain optimal bandwidths and offer a comparison of these methods via a simulation study. In certain situations, our method of estimating an optimal bandwidth yields a smaller MISE than competing methods to compute bandwidths. This procedure is illustrated by an application to two data sets.  相似文献   

6.
Most of current false discovery rate (FDR) procedures in a microarray experiment assume restrictive dependence structures, resulting in being less reliable. FDR controlling procedure under suitable dependence structures based on Poisson distributional approximation is shown. Unlike other procedures, the distribution of false null hypotheses is estimated by using kernel density estimation allowing for dependent structures among the genes. Furthermore, we develop an FDR framework that minimizes the false nondiscovery rate (FNR) with a constraint on the controlled level of the FDR. The performance of the proposed FDR procedure is compared with that of other existing FDR controlling procedures, with an application to the microarray study of simulated data.  相似文献   

7.
Abstract.  Given an i.i.d. sample drawn from a density f on the real line, the problem of testing whether f is in a given class of densities is considered. Testing procedures constructed on the basis of minimizing the L 1-distance between a kernel density estimate and any density in the hypothesized class are investigated. General non-asymptotic bounds are derived for the power of the test. It is shown that the concentration of the data-dependent smoothing factor and the 'size' of the hypothesized class of densities play a key role in the performance of the test. Consistency and non-asymptotic performance bounds are established in several special cases, including testing simple hypotheses, translation/scale classes and symmetry. Simulations are also carried out to compare the behaviour of the method with the Kolmogorov-Smirnov test and an L 2 density-based approach due to Fan [ Econ. Theory 10 (1994) 316].  相似文献   

8.
It is well known that the ordinary least squares estimator of in the general linear model E y = , cov y = σ2 V, can be the best linear unbiased estimator even if V is not a multiple of the identity matrix. This article presents, in a historical perspective, the development of the several conditions for the ordinary least squares estimator to be best linear unbiased. Various characterizations of these conditions, using generalized inverses and orthogonal projectors, along with several examples, are also given. In addition, a complete set of references is provided.  相似文献   

9.
Likelihood cross-validation for kernel density estimation is known to be sensitive to extreme observations and heavy-tailed distributions. We propose a robust likelihood-based cross-validation method to select bandwidths in multivariate density estimations. We derive this bandwidth selector within the framework of robust maximum likelihood estimation. This method establishes a smooth transition from likelihood cross-validation for nonextreme observations to least squares cross-validation for extreme observations, thereby combining the efficiency of likelihood cross-validation and the robustness of least-squares cross-validation. We also suggest a simple rule to select the transition threshold. We demonstrate the finite sample performance and practical usefulness of the proposed method via Monte Carlo simulations and a real data application on Chinese air pollution.  相似文献   

10.
基于中国1995-2013年省域数据,采用基尼系数及其分解、核密度估计方法,从人口和土地城镇化入手,系统分析了中国城镇化的地域非均衡及其动态演化规律。结果发现,1.中国人口和土地城镇化分布均呈现出由东往西逐渐降低的规律,城镇化非均衡主要体现在土地城镇化,而人口城镇化则未出现明显分异。2.全国尺度人口城镇化基尼系数随时间不断下降,城镇化非均衡逐渐减小;土地城镇化基尼系数则呈倒"U"型,城镇化非均衡先增后减。3.东中西三大区域内人口城镇化基尼系数均呈直线下降,区域间非均衡东部最大,西部次之,中部最小;土地城镇化非均衡则是东部大于中部和西部,但近年来西部已超过东部。4.人口城镇化非均衡在1995-2001年间主要来自地区间重叠,而后2002-2013年主要由地区间差异驱动;土地城镇化非均衡则主要来源于地区间差异。5.核密度估计显示人口城镇化增速较快,波动较小,而土地城镇化则极化趋势明显,波动较大。新型城镇化的协调推进宜从人口和土地城镇化两方面着手,特别要注意土地城镇化的失衡发展问题。  相似文献   

11.
Non-parametric Kernel Estimation of the Coefficient of a Diffusion   总被引:4,自引:0,他引:4  
In this work we exhibit a non-parametric estimator of kernel type, for the diffusion coefficient when one observes a one-dimensional diffusion process at times i / n for i = , ..., n and study its asymptotics as n ←∞. When the diffusion coefficient has regularity r ≥ 1, we obtain a rate 1/ n r /(1+2 r ), both for pointwise estimation and for estimation on a compact subset of R: this is the same rate as for non-parametric estimation of a density with i.i.d. observations.  相似文献   

12.
Kraft, Lepage, and van Eeden (1985) have suggested using a symmetrized version of the kernel estimator when the true density f of the observation is known to be symmetric around a possibly unknown point θ. The effect of this symmetrization device depends on the smoothness of f * f(x) = f f(x+t)f(t) dt at zero. We show that if θ has to be estimated and if f is not absolutely continuous, symmetrization may deteriorate the estimate.  相似文献   

13.
In this article, we investigate the limitations of traditional quantile function estimators and introduce a new class of quantile function estimators, namely, the semi-parametric tail-extrapolated quantile estimators, which has excellent performance for estimating the extreme tails with finite sample sizes. The smoothed bootstrap and direct density estimation via the characteristic function methods are developed for the estimation of confidence intervals. Through a comprehensive simulation study to compare the confidence interval estimations of various quantile estimators, we discuss the preferred quantile estimator in conjunction with the confidence interval estimation method to use under different circumstances. Data examples are given to illustrate the superiority of the semi-parametric tail-extrapolated quantile estimators. The new class of quantile estimators is obtained by slight modification of traditional quantile estimators, and therefore, should be specifically appealing to researchers in estimating the extreme tails.  相似文献   

14.
In some long-term studies, a series of dependent and possibly censored failure times may be observed. Suppose that the failure times have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the failure times and its kernel estimate f n is the integrated square error(ISE). In this article, we derive a central limit theorem for the integrated square error of the kernel density estimators under a censored dependent model.  相似文献   

15.
Least absolute deviation regression is applied using a fixed number of points for all values of the index to estimate the index and scale parameter of the stable distribution using regression methods based on the empirical characteristic function. The recognized fixed number of points estimation procedure uses ten points in the interval zero to one, and least squares estimation. It is shown that using the more robust least absolute regression based on iteratively re-weighted least squares outperforms the least squares procedure with respect to bias and also mean square error in smaller samples.  相似文献   

16.
Large Deviations Limit Theorems for the Kernel Density Estimator   总被引:2,自引:0,他引:2  
We establish pointwise and uniform large deviations limit theorems of Chernoff-type for the non-parametric kernel density estimator based on a sequence of independent and identically distributed random variables. The limits are well-identified and depend upon the underlying kernel and density function. We derive then some implications of our results in the study of asymptotic efficiency of the goodness-of-fit test based on the maximal deviation of the kernel density estimator as well as the inaccuracy rate of this estimate  相似文献   

17.
We describe a method for estimating the coefficients in a logistic regression model when the predictors are subject to measurement error and an instrumental variable is present. The proposed method is based upon the theory of factor scores taken from factor analysis. Two versions of the proposed method, a simple one and an extended one, are compared to the methods referred to by Carrol, Ruppert and Stefanski (1995) through simulation studies. Our conclusion is that the simple version performs as well as the methods from Carrol et al. (1995), and the extended version performs betterwith respect to MSE, due to a reduction of bias.  相似文献   

18.
Summary. We propose a kernel estimator of integrated squared density derivatives, from a sample that has been contaminated by random noise. We derive asymptotic expressions for the bias and the variance of the estimator and show that the squared bias term dominates the variance term. This coincides with results that are available for non-contaminated observations. We then discuss the selection of the bandwidth parameter when estimating integrated squared density derivatives based on contaminated data. We propose a data-driven bandwidth selection procedure of the plug-in type and investigate its finite sample performance via a simulation study.  相似文献   

19.
Here, we apply the smoothing technique proposed by Chaubey et al. (2007 Chaubey , Y. P. , Sen , A. , Sen , P. K. ( 2007 ). A new smooth density estimator for non-negative random variables. Technical Report No. 1/07. Department of Mathematics and Statistics, Concordia University, Montreal, Canada . [Google Scholar]) for the empirical survival function studied in Bagai and Prakasa Rao (1991 Bagai , I. , Prakasa Rao , B. L. S. ( 1991 ). Estimation of the survival function for stationary associated processes . Statist. Probab. Lett. 12 : 385391 .[Crossref], [Web of Science ®] [Google Scholar]) for a sequence of stationary non-negative associated random variables.The derivative of this estimator in turn is used to propose a nonparametric density estimator. The asymptotic properties of the resulting estimators are studied and contrasted with some other competing estimators. A simulation study is carried out comparing the recent estimator based on the Poisson weights (Chaubey et al., 2011 Chaubey , Y. P. , Dewan , I. , Li , J. ( 2011 ). Smooth estimation of survival and density functions for a stationary associated process using poisson weights . Statist. Probab. Lett. 81 : 267276 .[Crossref], [Web of Science ®] [Google Scholar]) showing that the two estimators have comparable finite sample global as well as local behavior.  相似文献   

20.
The nonparametric estimation of the Bernoulli regression function is studied. The uniform consistency conditions are established and the limit theorems are proved for continuous functionals on C[a, 1 ? a], 0 < a < 1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号