首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solving label switching is crucial for interpreting the results of fitting Bayesian mixture models. The label switching originates from the invariance of posterior distribution to permutation of component labels. As a result, the component labels in Markov chain simulation may switch to another equivalent permutation, and the marginal posterior distribution associated with all labels may be similar and useless for inferring quantities relating to each individual component. In this article, we propose a new simple labelling method by minimizing the deviance of the class probabilities to a fixed reference labels. The reference labels can be chosen before running Markov chain Monte Carlo (MCMC) using optimization methods, such as expectation-maximization algorithms, and therefore the new labelling method can be implemented by an online algorithm, which can reduce the storage requirements and save much computation time. Using the Acid data set and Galaxy data set, we demonstrate the success of the proposed labelling method for removing the labelling switching in the raw MCMC samples.  相似文献   

2.
Markov chain Monte Carlo (MCMC) algorithms have been shown to be useful for estimation of complex item response theory (IRT) models. Although an MCMC algorithm can be very useful, it also requires care in use and interpretation of results. In particular, MCMC algorithms generally make extensive use of priors on model parameters. In this paper, MCMC estimation is illustrated using a simple mixture IRT model, a mixture Rasch model (MRM), to demonstrate how the algorithm operates and how results may be affected by some commonly used priors. Priors on the probabilities of mixtures, label switching, model selection, metric anchoring, and implementation of the MCMC algorithm using WinBUGS are described, and their effects illustrated on parameter recovery in practical testing situations. In addition, an example is presented in which an MRM is fitted to a set of educational test data using the MCMC algorithm and a comparison is illustrated with results from three existing maximum likelihood estimation methods.  相似文献   

3.
Reversible jump Markov chain Monte Carlo (RJMCMC) algorithms can be efficiently applied in Bayesian inference for hidden Markov models (HMMs), when the number of latent regimes is unknown. As for finite mixture models, when priors are invariant to the relabelling of the regimes, HMMs are unidentifiable in data fitting, because multiple ways to label the regimes can alternate during the MCMC iterations; this is the so-called label switching problem. HMMs with an unknown number of regimes are considered here and the goal of this paper is the comparison, both applied and theoretical, of five methods used for tackling label switching within a RJMCMC algorithm; they are: post-processing, partial reordering, permutation sampling, sampling from a Markov prior and rejection sampling. The five strategies we compare have been proposed mostly in the literature of finite mixture models and only two of them, i.e. rejection sampling and partial reordering, have been presented in RJMCMC algorithms for HMMs. We consider RJMCMC algorithms in which the parameters are updated by Gibbs sampling and the dimension of the model changes in split-and-merge and birth-and-death moves. Finally, an example illustrates and compares the five different methodologies.  相似文献   

4.
The authors present theoretical results that show how one can simulate a mixture distribution whose components live in subspaces of different dimension by reformulating the problem in such a way that observations may be drawn from an auxiliary continuous distribution on the largest subspace and then transformed in an appropriate fashion. Motivated by the importance of enlarging the set of available Markov chain Monte Carlo (MCMC) techniques, the authors show how their results can be fruitfully employed in problems such as model selection (or averaging) of nested models, or regeneration of Markov chains for evaluating standard deviations of estimated expectations derived from MCMC simulations.  相似文献   

5.
One way that has been used for identifying and estimating threshold autoregressive (TAR) models for nonlinear time series follows the Markov chain Monte Carlo (MCMC) approach via the Gibbs sampler. This route has major computational difficulties, specifically, in getting convergence to the parameter distributions. In this article, a new procedure for identifying a TAR model and for estimating its parameters is developed by following the reversible jump MCMC procedure. It is found that the proposed procedure conveys a Markov chain with convergence properties.  相似文献   

6.
Markov chain Monte Carlo (MCMC) implementations of Bayesian inference for latent spatial Gaussian models are very computationally intensive, and restrictions on storage and computation time are limiting their application to large problems. Here we propose various parallel MCMC algorithms for such models. The algorithms' performance is discussed with respect to a simulation study, which demonstrates the increase in speed with which the algorithms explore the posterior distribution as a function of the number of processors. We also discuss how feasible problem size is increased by use of these algorithms.  相似文献   

7.
The label switching problem is caused by the likelihood of a Bayesian mixture model being invariant to permutations of the labels. The permutation can change multiple times between Markov Chain Monte Carlo (MCMC) iterations making it difficult to infer component-specific parameters of the model. Various so-called ‘relabelling’ strategies exist with the goal to ‘undo’ the label switches that have occurred to enable estimation of functions that depend on component-specific parameters. Existing deterministic relabelling algorithms rely upon specifying a loss function, and relabelling by minimising its posterior expected loss. In this paper we develop probabilistic approaches to relabelling that allow for estimation and incorporation of the uncertainty in the relabelling process. Variants of the probabilistic relabelling algorithm are introduced and compared to existing deterministic relabelling algorithms. We demonstrate that the idea of probabilistic relabelling can be expressed in a rigorous framework based on the EM algorithm.  相似文献   

8.
Markov chain Monte Carlo (MCMC) methods, while facilitating the solution of many complex problems in Bayesian inference, are not currently well adapted to the problem of marginal maximum a posteriori (MMAP) estimation, especially when the number of parameters is large. We present here a simple and novel MCMC strategy, called State-Augmentation for Marginal Estimation (SAME), which leads to MMAP estimates for Bayesian models. We illustrate the simplicity and utility of the approach for missing data interpolation in autoregressive time series and blind deconvolution of impulsive processes.  相似文献   

9.
Effectively solving the label switching problem is critical for both Bayesian and Frequentist mixture model analyses. In this article, a new relabeling method is proposed by extending a recently developed modal clustering algorithm. First, the posterior distribution is estimated by a kernel density from permuted MCMC or bootstrap samples of parameters. Second, a modal EM algorithm is used to find the m! symmetric modes of the KDE. Finally, samples that ascend to the same mode are assigned the same label. Simulations and real data applications demonstrate that the new method provides more accurate estimates than many existing relabeling methods.  相似文献   

10.
Label switching is a well-known and fundamental problem in Bayesian estimation of finite mixture models. It arises when exploring complex posterior distributions by Markov Chain Monte Carlo (MCMC) algorithms, because the likelihood of the model is invariant to the relabelling of mixture components. If the MCMC sampler randomly switches labels, then it is unsuitable for exploring the posterior distributions for component-related parameters. In this paper, a new procedure based on the post-MCMC relabelling of the chains is proposed. The main idea of the method is to perform a clustering technique on the similarity matrix, obtained through the MCMC sample, whose elements are the probabilities that any two units in the observed sample are drawn from the same component. Although it cannot be generalized to any situation, it may be handy in many applications because of its simplicity and very low computational burden.  相似文献   

11.
In this study, we propose a prior on restricted Vector Autoregressive (VAR) models. The prior setting permits efficient Markov Chain Monte Carlo (MCMC) sampling from the posterior of the VAR parameters and estimation of the Bayes factor. Numerical simulations show that when the sample size is small, the Bayes factor is more effective in selecting the correct model than the commonly used Schwarz criterion. We conduct Bayesian hypothesis testing of VAR models on the macroeconomic, state-, and sector-specific effects of employment growth.  相似文献   

12.
Abstract.  Much recent methodological progress in the analysis of infectious disease data has been due to Markov chain Monte Carlo (MCMC) methodology. In this paper, it is illustrated that rejection sampling can also be applied to a family of inference problems in the context of epidemic models, avoiding the issues of convergence associated with MCMC methods. Specifically, we consider models for epidemic data arising from a population divided into households. The models allow individuals to be potentially infected both from outside and from within the household. We develop methodology for selection between competing models via the computation of Bayes factors. We also demonstrate how an initial sample can be used to adjust the algorithm and improve efficiency. The data are assumed to consist of the final numbers ultimately infected within a sample of households in some community. The methods are applied to data taken from outbreaks of influenza.  相似文献   

13.
Latent class models (LCMs) are used increasingly for addressing a broad variety of problems, including sparse modeling of multivariate and longitudinal data, model-based clustering, and flexible inferences on predictor effects. Typical frequentist LCMs require estimation of a single finite number of classes, which does not increase with the sample size, and have a well-known sensitivity to parametric assumptions on the distributions within a class. Bayesian nonparametric methods have been developed to allow an infinite number of classes in the general population, with the number represented in a sample increasing with sample size. In this article, we propose a new nonparametric Bayes model that allows predictors to flexibly impact the allocation to latent classes, while limiting sensitivity to parametric assumptions by allowing class-specific distributions to be unknown subject to a stochastic ordering constraint. An efficient MCMC algorithm is developed for posterior computation. The methods are validated using simulation studies and applied to the problem of ranking medical procedures in terms of the distribution of patient morbidity.  相似文献   

14.
I propose a method for inference in dynamic discrete choice models (DDCM) that utilizes Markov chain Monte Carlo (MCMC) and artificial neural networks (ANNs). MCMC is intended to handle high-dimensional integration in the likelihood function of richly specified DDCMs. ANNs approximate the dynamic-program (DP) solution as a function of the parameters and state variables prior to estimation to avoid having to solve the DP on each iteration. Potential applications of the proposed methodology include inference in DDCMs with random coefficients, serially correlated unobservables, and dependence across individual observations. The article discusses MCMC estimation of DDCMs, provides relevant background on ANNs, and derives a theoretical justification for the method. Experiments suggest this to be a promising approach.  相似文献   

15.
In this paper, we use Markov Chain Monte Carlo (MCMC) methods in order to estimate and compare stochastic production frontier models from a Bayesian perspective. We consider a number of competing models in terms of different production functions and the distribution of the asymmetric error term. All MCMC simulations are done using the package JAGS (Just Another Gibbs Sampler), a clone of the classic BUGS package which works closely with the R package where all the statistical computations and graphics are done.  相似文献   

16.
The rjmcmc package for R implements the post‐processing reversible jump Markov chain Monte Carlo (MCMC) algorithm of Barker & Link. MCMC output from each of the models is used to estimate posterior model probabilities and Bayes factors. Automatic differentiation is used to simplify implementation. The package is demonstrated on two examples.  相似文献   

17.
We develop clustering procedures for longitudinal trajectories based on a continuous-time hidden Markov model (CTHMM) and a generalized linear observation model. Specifically, in this article we carry out finite and infinite mixture model-based clustering for a CTHMM and achieve inference using Markov chain Monte Carlo (MCMC). For a finite mixture model with a prior on the number of components, we implement reversible-jump MCMC to facilitate the trans-dimensional move between models with different numbers of clusters. For a Dirichlet process mixture model, we utilize restricted Gibbs sampling split–merge proposals to improve the performance of the MCMC algorithm. We apply our proposed algorithms to simulated data as well as a real-data example, and the results demonstrate the desired performance of the new sampler.  相似文献   

18.
We consider the issue of sampling from the posterior distribution of exponential random graph (ERG) models and other statistical models with intractable normalizing constants. Existing methods based on exact sampling are either infeasible or require very long computing time. We study a class of approximate Markov chain Monte Carlo (MCMC) sampling schemes that deal with this issue. We also develop a new Metropolis–Hastings kernel to sample sparse large networks from ERG models. We illustrate the proposed methods on several examples.  相似文献   

19.
For many stochastic models, it is difficult to make inference about the model parameters because it is impossible to write down a tractable likelihood given the observed data. A common solution is data augmentation in a Markov chain Monte Carlo (MCMC) framework. However, there are statistical problems where this approach has proved infeasible but where simulation from the model is straightforward leading to the popularity of the approximate Bayesian computation algorithm. We introduce a forward simulation MCMC (fsMCMC) algorithm, which is primarily based upon simulation from the model. The fsMCMC algorithm formulates the simulation of the process explicitly as a data augmentation problem. By exploiting non‐centred parameterizations, an efficient MCMC updating schema for the parameters and augmented data is introduced, whilst maintaining straightforward simulation from the model. The fsMCMC algorithm is successfully applied to two distinct epidemic models including a birth–death–mutation model that has only previously been analysed using approximate Bayesian computation methods.  相似文献   

20.
A regression model with skew-normal errors provides a useful extension for ordinary normal regression models when the dataset under consideration involves asymmetric outcomes. In this article, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis for joint location and scale nonlinear models with skew-normal errors, which relax the normality assumption and include the normal one as a special case. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of MCMC methods to simulate samples from the joint posterior distribution. Finally, simulation studies and a real example are used to illustrate the proposed methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号