共查询到8条相似文献,搜索用时 15 毫秒
1.
In this article, we consider a Bayesian analysis of a possible change in the parameters of autoregressive time series of known order p, AR(p). An unconditional Bayesian test based on highest posterior density (HPD) credible sets is determined. The test is useful to detect a change in any one of the parameters separately. Using the Gibbs sampler algorithm, we approximate the posterior densities of the change point and other parameters to calculate the p-values that define our test. 相似文献
2.
A multivariate time series model for the analysis and prediction of carbon monoxide atmospheric concentrations 总被引:2,自引:0,他引:2
Stefano F. Tonellato 《Journal of the Royal Statistical Society. Series C, Applied statistics》2001,50(2):187-200
We use a Bayesian multivariate time series model for the analysis of the dynamics of carbon monoxide atmospheric concentrations. The data are observed at four sites. It is assumed that the logarithm of the observed process can be represented as the sum of unobservable components: a trend, a daily periodicity, a stationary autoregressive signal and an erratic term. Bayesian analysis is performed via Gibbs sampling. In particular, we consider the problem of joint temporal prediction when data are observed at a few sites and it is not possible to fit a complex space–time model. A retrospective analysis of the trend component is also given, which is important in that it explains the evolution of the variability in the observed process. 相似文献
3.
G. Huerta & M. West 《Journal of the Royal Statistical Society. Series B, Statistical methodology》1999,61(4):881-899
New approaches to prior specification and structuring in autoregressive time series models are introduced and developed. We focus on defining classes of prior distributions for parameters and latent variables related to latent components of an autoregressive model for an observed time series. These new priors naturally permit the incorporation of both qualitative and quantitative prior information about the number and relative importance of physically meaningful components that represent low frequency trends, quasi-periodic subprocesses and high frequency residual noise components of observed series. The class of priors also naturally incorporates uncertainty about model order and hence leads in posterior analysis to model order assessment and resulting posterior and predictive inferences that incorporate full uncertainties about model order as well as model parameters. Analysis also formally incorporates uncertainty and leads to inferences about unknown initial values of the time series, as it does for predictions of future values. Posterior analysis involves easily implemented iterative simulation methods, developed and described here. One motivating field of application is climatology, where the evaluation of latent structure, especially quasi-periodic structure, is of critical importance in connection with issues of global climatic variability. We explore the analysis of data from the southern oscillation index, one of several series that has been central in recent high profile debates in the atmospheric sciences about recent apparent trends in climatic indicators. 相似文献
4.
Sujit K. Sahu Kanti V. Mardia 《Journal of the Royal Statistical Society. Series C, Applied statistics》2005,54(1):223-244
Summary. Short-term forecasts of air pollution levels in big cities are now reported in news-papers and other media outlets. Studies indicate that even short-term exposure to high levels of an air pollutant called atmospheric particulate matter can lead to long-term health effects. Data are typically observed at fixed monitoring stations throughout a study region of interest at different time points. Statistical spatiotemporal models are appropriate for modelling these data. We consider short-term forecasting of these spatiotemporal processes by using a Bayesian kriged Kalman filtering model. The spatial prediction surface of the model is built by using the well-known method of kriging for optimum spatial prediction and the temporal effects are analysed by using the models underlying the Kalman filtering method. The full Bayesian model is implemented by using Markov chain Monte Carlo techniques which enable us to obtain the optimal Bayesian forecasts in time and space. A new cross-validation method based on the Mahalanobis distance between the forecasts and observed data is also developed to assess the forecasting performance of the model implemented. 相似文献
5.
T. Manouchehri 《Journal of Statistical Computation and Simulation》2019,89(1):71-97
Periodic autoregressive (PAR) models with symmetric innovations are widely used on time series analysis, whereas its asymmetric counterpart inference remains a challenge, because of a number of problems related to the existing computational methods. In this paper, we use an interesting relationship between periodic autoregressive and vector autoregressive (VAR) models to study maximum likelihood and Bayesian approaches to the inference of a PAR model with normal and skew-normal innovations, where different kinds of estimation methods for the unknown parameters are examined. Several technical difficulties which are usually complicated to handle are reported. Results are compared with the existing classical solutions and the practical implementations of the proposed algorithms are illustrated via comprehensive simulation studies. The methods developed in the study are applied and illustrate a real-time series. The Bayes factor is also used to compare the multivariate normal model versus the multivariate skew-normal model. 相似文献
6.
Jaehee Kim 《Journal of applied statistics》2014,41(10):2157-2177
We consider a Bayesian deterministically trending dynamic time series model with heteroscedastic error variance, in which there exist multiple structural changes in level, trend and error variance, but the number of change-points and the timings are unknown. For a Bayesian analysis, a truncated Poisson prior and conjugate priors are used for the number of change-points and the distributional parameters, respectively. To identify the best model and estimate the model parameters simultaneously, we propose a new method by sequentially making use of the Gibbs sampler in conjunction with stochastic approximation Monte Carlo simulations, as an adaptive Monte Carlo algorithm. The numerical results are in favor of our method in terms of the quality of estimates. 相似文献
7.
Peter Hall Ingrid Van Keilegom 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2003,65(2):443-456
Summary. We show that difference-based methods can be used to construct simple and explicit estimators of error covariance and autoregressive parameters in nonparametric regression with time series errors. When the error process is Gaussian our estimators are efficient, but they are available well beyond the Gaussian case. As an illustration of their usefulness we show that difference-based estimators can be used to produce a simplified version of time series cross-validation. This new approach produces a bandwidth selector that is equivalent, to both first and second orders, to that given by the full time series cross-validation algorithm. Other applications of difference-based methods are to variance estimation and construction of confidence bands in nonparametric regression. 相似文献