首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
The study proposes a Shewhart-type control chart, namely an MD chart, based on average absolute deviations taken from the median, for monitoring changes (especially moderate and large changes – a major concern of Shewhart control charts) in process dispersion assuming normality of the quality characteristic to be monitored. The design structure of the proposed MD chart is developed and its comparison is made with those of two well-known dispersion control charts, namely the R and S charts. Using power curves as a performance measure, it has been observed that the design structure of the proposed MD chart is more powerful than that of the R chart and is very close competitor to that of the S chart, in terms of discriminatory power for detecting shifts in the process dispersion. The non-normality effect is also examined on design structures of the three charts, and it has been observed that the design structure of the proposed MD chart is least affected by departure from normality.  相似文献   

2.
ABSTRACT

The EWMA control chart is used to detect small shifts in a process. It has been shown that, for certain values of the smoothing parameter, the EWMA chart for the mean is robust to non normality. In this article, we examine the case of non normality in the EWMA charts for the dispersion. It is shown that we can have an EWMA chart for dispersion robust to non normality when non normality is not extreme.  相似文献   

3.
郭宝才  苏为华 《统计研究》2008,25(6):97-101
本文研究了两个系统因素下过程控制中样本容量和抽样区间的联合动态均值图(VSSI),并利用马氏链方法研究了动态均值图的性质。结果表明:VSSI图比VSS图,VSI图及FSSI图能更快地发现过程均值的漂移,因此,VSSI图对于快速检测遭受不同类型系统因素的过程更加有效,且对均值的敏感性增加,最后给出了联合动态均值图在生产中的一个应用实例。  相似文献   

4.
In this article we consider a control chart based on the sample variances of two quality characteristics. The points plotted on the chart correspond to the maximum value of these two statistics. The main reason to consider the proposed chart instead of the generalized variance | S | chart is its better diagnostic feature, that is, with the new chart it is easier to relate an out-of-control signal to the variables whose parameters have moved away from their in-control values. We study the control chart efficiency considering different shifts in the covariance matrix. In this way, we obtain the average run length (ARL) that measures the effectiveness of a control chart in detecting process shifts. The proposed chart always detects process disturbances faster than the generalized variance | S | chart. The same is observed when the size of the samples is variable, except in a few cases in which the size of the samples switches between small size and very large size.  相似文献   

5.
6.
Abstract

It is common to monitor several correlated quality characteristics using the Hotelling's T 2 statistic. However, T 2 confounds the location shift with scale shift and consequently it is often difficult to determine the factors responsible for out of control signal in terms of the process mean vector and/or process covariance matrix. In this paper, we propose a diagnostic procedure called ‘D-technique’ to detect the nature of shift. For this purpose, two sets of regression equations, each consisting of regression of a variable on the remaining variables, are used to characterize the ‘structure’ of the ‘in control’ process and that of ‘current’ process. To determine the sources responsible for an out of control state, it is shown that it is enough to compare these two structures using the dummy variable multiple regression equation. The proposed method is operationally simpler and computationally advantageous over existing diagnostic tools. The technique is illustrated with various examples.  相似文献   

7.
In this article, a multivariate synthetic control chart is developed for monitoring the mean vector of a normally distributed process. The proposed chart is a combination of the Hotelling's T 2 chart and Conforming Run Length chart. The operation, design, and performance of the chart are described. Average run length comparisons between some other existing control charts and the synthetic T 2 chart are presented. They indicate that the synthetic T 2 chart outperforms Hotelling's T 2 chart and T 2 chart with supplementary runs rules.  相似文献   

8.
9.
Abstract

The adoption of control charts can be traced to the classic text by Shewhart (1931 Shewhart, W. A. 1931. Economic control of quality of manufactured product. London: Macmillan. ISBN: 1614278115. [Google Scholar]) and championed by many writers since then, including Deming (1982 Deming, W. E. 1982. Out of the crisis: Quality, productivity and competitive position. Cambridge: Cambridge University Press. ISBN: 0521305535. [Google Scholar]). Numerous other texts and publications stress the continuing importance of this area. While tables of key Shewhart control chart parameters are extremely useful they are easily lost or mislaid and can sometimes be difficult to interpret. To address this issue spreadsheet code is implemented to produce all the key control chart factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号