首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integer-valued time series models make use of thinning operators for coherency in the nature of count data. However, the thinning operators make residuals unobservable and are the main difficulty in developing diagnostic tools for autocorrelated count data. In this regard, we introduce a new residual, which takes the form of predictive distribution functions, to assess probabilistic forecasts, and this new residual is supplemented by a modified usual residuals. Under integer-valued autoregressive (INAR) models, the properties of these two residuals are investigated and used to evaluate the predictive performance and model adequacy of the INAR models. We compare our residuals with the existing residuals through simulation studies and apply our method to select an appropriate INAR model for an over-dispersed real data.  相似文献   

2.
In this paper, we construct a new mixture of geometric INAR(1) process for modeling over-dispersed count time series data, in particular data consisting of large number of zeros and ones. For some real data sets, the existing INAR(1) processes do not fit well, e.g., the geometric INAR(1) process overestimates the number of zero observations and underestimates the one observations, whereas Poisson INAR(1) process underestimates the zero observations and overestimates the one observations. Furthermore, for heavy tails, the PINAR(1) process performs poorly in the tail part. The existing zero-inflated Poisson INAR(1) and compound Poisson INAR(1) processes have the same kind of limitations. In order to remove this problem of under-fitting at one point and over-fitting at others points, we add some extra probability at one in the geometric INAR(1) process and build a new mixture of geometric INAR(1) process. Surprisingly, for some real data sets, it removes the problem of under and over-fitting over all the observations up to a significant extent. We then study the stationarity and ergodicity of the proposed process. Different methods of parameter estimation, namely the Yule-Walker and the quasi-maximum likelihood estimation procedures are discussed and illustrated using some simulation experiments. Furthermore, we discuss the future prediction along with some different forecasting accuracy measures. Two real data sets are analyzed to illustrate the effective use of the proposed model.  相似文献   

3.
ABSTRACT

Non-stationarity in bivariate time series of counts may be induced by a number of time-varying covariates affecting the bivariate responses due to which the innovation terms of the individual series as well as the bivariate dependence structure becomes non-stationary. So far, in the existing models, the innovation terms of individual INAR(1) series and the dependence structure are assumed to be constant even though the individual time series are non-stationary. Under this assumption, the reliability of the regression and correlation estimates is questionable. Besides, the existing estimation methodologies such as the conditional maximum likelihood (CMLE) and the composite likelihood estimation are computationally intensive. To address these issues, this paper proposes a BINAR(1) model where the innovation series follow a bivariate Poisson distribution under some non-stationary distributional assumptions. The method of generalized quasi-likelihood (GQL) is used to estimate the regression effects while the serial and bivariate correlations are estimated using a robust moment estimation technique. The application of model and estimation method is made in the simulated data. The GQL method is also compared with the CMLE, generalized method of moments (GMM) and generalized estimating equation (GEE) approaches where through simulation studies, it is shown that GQL yields more efficient estimates than GMM and equally or slightly more efficient estimates than CMLE and GEE.  相似文献   

4.
Even though integer-valued time series are common in practice, the methods for their analysis have been developed only in recent past. Several models for stationary processes with discrete marginal distributions have been proposed in the literature. Such processes assume the parameters of the model to remain constant throughout the time period. However, this need not be true in practice. In this paper, we introduce non-stationary integer-valued autoregressive (INAR) models with structural breaks to model a situation, where the parameters of the INAR process do not remain constant over time. Such models are useful while modelling count data time series with structural breaks. The Bayesian and Markov Chain Monte Carlo (MCMC) procedures for the estimation of the parameters and break points of such models are discussed. We illustrate the model and estimation procedure with the help of a simulation study. The proposed model is applied to the two real biometrical data sets.  相似文献   

5.
In this paper, we introduce a new non-negative integer-valued autoregressive time series model based on a new thinning operator, so called generalized zero-modified geometric (GZMG) thinning operator. The first part of the paper is devoted to the distribution, GZMG distribution, which is obtained as the convolution of the zero-modified geometric (ZMG) distributed random variables. Some properties of this distribution are derived. Then, we construct a thinning operator based on the counting processes with ZMG distribution. Finally, an INAR(1) time series model is introduced and its properties including estimation issues are derived and discussed. A small Monte Carlo experiment is conducted to evaluate the performance of maximum likelihood estimators in finite samples. At the end of the paper, we consider an empirical illustration of the introduced INAR(1) model.  相似文献   

6.
In this article, we consider a first-order integer-valued autoregressive (INAR(1)) model. Then, we propose change point estimators for the rate and dependence parameters in INAR(1) model using maximum likelihood estimation method when the type of change belongs to a family of monotonic changes. To monitor the process, a combined EWMA and c control chart is considered. The results show that the proposed change point estimators provide efficient estimates of the change time. At the end, to illustrate the application of the proposed estimators, a real case related to IP counts data is investigated.  相似文献   

7.
Bivariate integer-valued time series occur in many areas, such as finance, epidemiology, business etc. In this article, we present bivariate autoregressive integer-valued time-series models, based on the signed thinning operator. Compared to classical bivariate INAR models, the new processes have the advantage to allow for negative values for both the time series and the autocorrelation functions. Strict stationarity and ergodicity of the processes are established. The moments and the autocovariance functions are determined. The conditional least squares estimator of the model parameters is considered and the asymptotic properties of the obtained estimators are derived. An analysis of a real dataset from finance and a simulation study are carried out to assess the performance of the model.  相似文献   

8.
This paper considers the first-order integer-valued autoregressive (INAR) process with Katz family innovations. This family of INAR processes includes a broad class of INAR(1) processes with Poisson, negative binomial, and binomial innovations, respectively, featuring equi-, over-, and under-dispersion. Its probabilistic properties such as ergodicity and stationarity are investigated and the formula of the marginal mean and variance is provided. Further, a statistical process control procedure based on the cumulative sum control chart is considered to monitor autocorrelated count processes. A simulation and real data analysis are conducted for illustration.  相似文献   

9.
Time series of counts occur in many fields of practice, with the Poisson distribution as a popular choice for the marginal process distribution. A great variety of serial dependence structures of stationary count processes can be modelled by the INARMA family. In this article, we propose a new approach to the INMA(q) family in general, including previously known results as special cases. In the particular case of Poisson marginals, we will derive new results concerning regression properties and the serial dependence structure of INAR(1) and INMA(q) models. Finally, we present explicit expressions for the distribution of jumps in such processes.  相似文献   

10.
The INAR(1) model (integer-valued autoregressive) is commonly used to model serially dependent processes of Poisson counts. We propose several asymptotic simultaneous confidence regions for the two parameters of a Poisson INAR(1) model, and investigate their performance and robustness for finite-length time series in a simulation study. Practical recommendations are derived, and the application of the confidence regions is illustrated by a real-data example.  相似文献   

11.
The integer-valued autoregressive (INAR) model has been widely used in diverse fields. Since the task of identifying the underlying distribution of time-series models is a crucial step for further inferences, we consider the goodness-of-fit test for the Poisson assumption on first-order INAR models. For a test, we employ Fisher’s dispersion test due to its simplicity and then derive its null limiting distribution. As an illustration, a simulation study and real data analysis are conducted for the counts of coal mining disasters, the monthly crime data set from New South Wales, and the annual numbers of worldwide earthquakes.  相似文献   

12.
Integer-valued autoregressive (INAR) processes form a very useful class of processes suitable to model time series of counts. Several practically relevant estimators based on INAR data are known to be systematically biased away from their population values, e.g. sample autocovariances, sample autocorrelations, or the dispersion index. We propose to do bias correction for such estimators by using a recently proposed INAR-type bootstrap scheme that is tailor-made for INAR processes, and which has been proven to be asymptotically consistent under general conditions. This INAR bootstrap allows an implementation with and without parametrically specifying the innovations' distribution. To judge the potential of corresponding bias correction, we compare these bootstraps in simulations to several competitors that include the AR bootstrap and block bootstrap. Finally, we conclude with an illustrative data application.  相似文献   

13.
The bivariate negative binomial regression (BNBR) and the bivariate Poisson log-normal regression (BPLR) models have been used to describe count data that are over-dispersed. In this paper, a new bivariate generalized Poisson regression (BGPR) model is defined. An advantage of the new regression model over the BNBR and BPLR models is that the BGPR can be used to model bivariate count data with either over-dispersion or under-dispersion. In this paper, we carry out a simulation study to compare the three regression models when the true data-generating process exhibits over-dispersion. In the simulation experiment, we observe that the bivariate generalized Poisson regression model performs better than the bivariate negative binomial regression model and the BPLR model.  相似文献   

14.
ABSTRACT

New generalized binomial thinning operator with dependent counting series is introduced. An integer valued time series model with geometric marginals based on this thinning operator is constructed. Main features of the process are analyzed and determined. Estimation of the parameters are presented and some asymptotic properties of the obtained estimators are discussed. Behavior of the estimators is described through the numerical results. Also, model is applied on the real data set and compared to some relevant INAR(1) models.  相似文献   

15.
Abstract

In this paper, we present a fractional decomposition of the probability generating function of the innovation process of the first-order non-negative integer-valued autoregressive [INAR(1)] process to obtain the corresponding probability mass function. We also provide a comprehensive review of integer-valued time series models, based on the concept of thinning operators with geometric-type marginals. In particular, we develop two fractional approaches to obtain the distribution of innovation processes of the INAR(1) model and show that the distribution of the innovations sequence has geometric-type distribution. These approaches are discussed in detail and illustrated through a few examples.  相似文献   

16.
Count data often display excessive number of zero outcomes than are expected in the Poisson regression model. The zero-inflated Poisson regression model has been suggested to handle zero-inflated data, whereas the zero-inflated negative binomial (ZINB) regression model has been fitted for zero-inflated data with additional overdispersion. For bivariate and zero-inflated cases, several regression models such as the bivariate zero-inflated Poisson (BZIP) and bivariate zero-inflated negative binomial (BZINB) have been considered. This paper introduces several forms of nested BZINB regression model which can be fitted to bivariate and zero-inflated count data. The mean–variance approach is used for comparing the BZIP and our forms of BZINB regression model in this study. A similar approach was also used by past researchers for defining several negative binomial and zero-inflated negative binomial regression models based on the appearance of linear and quadratic terms of the variance function. The nested BZINB regression models proposed in this study have several advantages; the likelihood ratio tests can be performed for choosing the best model, the models have flexible forms of marginal mean–variance relationship, the models can be fitted to bivariate zero-inflated count data with positive or negative correlations, and the models allow additional overdispersion of the two dependent variables.  相似文献   

17.
Process capability indices evaluate the actual compliance of a process with given external specifications in a single number. For the case of a process of independent and identically distributed Poisson counts, two types of index have been proposed and investigated in the literature. The assumption of serial independence, however, is quite unrealistic for practice. We consider the case of an underlying Poisson INAR(1) process which has an AR(1)-like autocorrelation structure. We show that the performance of the estimated indices is degraded heavily if serial dependence is ignored. Therefore, we develop approaches for estimating the process capability (both for the observation and innovation process), which explicitly consider the observed degree of autocorrelation. For this purpose, we introduce a new unbiased estimator of the innovations’ mean of a Poisson INAR(1) process and derive its exact as well as asymptotic stochastic properties. In this context, we also present new explicit expressions for the third- and fourth-order moments of a Poisson INAR(1) process. Then the capability indices and the performance of their estimators are analysed and recommendations for practice are given.  相似文献   

18.
We consider the first-order Poisson autoregressive model proposed by McKenzie [Some simple models for discrete variate time series. Water Resour Bull. 1985;21:645–650] and Al-Osh and Alzaid [First-order integer valued autoregressive (INAR(1)) process. J Time Ser Anal. 1987;8:261–275], which may be suitable in situations where the time series data are non-negative and integer valued. We derive the second-order bias of the squared difference estimator [Weiß. Process capability analysis for serially dependent processes of Poisson counts. J Stat Comput Simul. 2012;82:383–404] for one of the parameters and show that this bias can be used to define a bias-reduced estimator. The behaviour of a modified conditional least-squares estimator is also studied. Furthermore, we access the asymptotic properties of the estimators here discussed. We present numerical evidence, based upon Monte Carlo simulation studies, showing that the here proposed bias-adjusted estimator outperforms the other estimators in small samples. We also present an application to a real data set.  相似文献   

19.
The article develops a semiparametric estimation method for the bivariate count data regression model. We develop a series expansion approach in which dependence between count variables is introduced by means of stochastically related unobserved heterogeneity components, and in which, unlike existing commonly used models, positive as well as negative correlations are allowed. Extensions that accommodate excess zeros, censored data, and multivariate generalizations are also given. Monte Carlo experiments and an empirical application to tobacco use confirms that the model performs well relative to existing bivariate models, in terms of various statistical criteria and in capturing the range of correlation among dependent variables. This article has supplementary materials online.  相似文献   

20.
This paper considers modelling of a non‐stationary bivariate integer‐valued autoregressive process of order 1 (BINAR(1)) where the cross‐dependence between the counting series is formed through the relationship of the current series with the previous‐lagged count series observations while the pair of innovations is independent and marginally Poisson. In addition, this paper proposes a generalised quasi‐likelihood (GQL) estimating equation based on the exact specification of the mean score and the auto‐covariance structure. The proposed approach is also compared with other popular techniques such as conditional maximum likelihood (CML), generalised least squares (GLS) and generalised method of moment (GMM) based on simulated data from the proposed BINAR(1). Moreover, the model is applied to weekly series of day and night road accidents arising in some regions of Mauritius and is compared with other existing BINAR(1) models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号