首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For fixed size sampling designs with high entropy, it is well known that the variance of the Horvitz–Thompson estimator can be approximated by the Hájek formula. The interest of this asymptotic variance approximation is that it only involves the first order inclusion probabilities of the statistical units. We extend this variance formula when the variable under study is functional, and we prove, under general conditions on the regularity of the individual trajectories and the sampling design, that we can get a uniformly convergent estimator of the variance function of the Horvitz–Thompson estimator of the mean function. Rates of convergence to the true variance function are given for the rejective sampling. We deduce, under conditions on the entropy of the sampling design, that it is possible to build confidence bands whose coverage is asymptotically the desired one via simulation of Gaussian processes with variance function given by the Hájek formula. Finally, the accuracy of the proposed variance estimator is evaluated on samples of electricity consumption data measured every half an hour over a period of 1 week.  相似文献   

2.
A sampling scheme for selection of a sample of two units with inclusion probability proportionalto size is suggested which provides a non–negative variance estimator of the variance of Horvitz–Thompson estimator. The suggested sampling scheme is shown to perform better than many of the existing unequal probability and inclusion probability proportional to size sampling Achemes for a number of natural populations.  相似文献   

3.
In this paper, an extension of Horvitz–Thompson estimator used in adaptive cluster sampling to continuous universe is developed. Main new results are presented in theorems. The primary notions of discrete population are transferred to continuous population. First and second order inclusion probabilities for networks are delivered. Horvitz–Thompson estimator for adaptive cluster sampling in continuous universe is constructed. The unbiasedness of the estimator is proven. Variance and unbiased variance estimator are delivered. Finally, the theory is illustrated with an example.  相似文献   

4.
Two‐phase sampling is often used for estimating a population total or mean when the cost per unit of collecting auxiliary variables, x, is much smaller than the cost per unit of measuring a characteristic of interest, y. In the first phase, a large sample s1 is drawn according to a specific sampling design p(s1) , and auxiliary data x are observed for the units is1 . Given the first‐phase sample s1 , a second‐phase sample s2 is selected from s1 according to a specified sampling design {p(s2s1) } , and (y, x) is observed for the units is2 . In some cases, the population totals of some components of x may also be known. Two‐phase sampling is used for stratification at the second phase or both phases and for regression estimation. Horvitz–Thompson‐type variance estimators are used for variance estimation. However, the Horvitz–Thompson ( Horvitz & Thompson, J. Amer. Statist. Assoc. 1952 ) variance estimator in uni‐phase sampling is known to be highly unstable and may take negative values when the units are selected with unequal probabilities. On the other hand, the Sen–Yates–Grundy variance estimator is relatively stable and non‐negative for several unequal probability sampling designs with fixed sample sizes. In this paper, we extend the Sen–Yates–Grundy ( Sen , J. Ind. Soc. Agric. Statist. 1953; Yates & Grundy , J. Roy. Statist. Soc. Ser. B 1953) variance estimator to two‐phase sampling, assuming fixed first‐phase sample size and fixed second‐phase sample size given the first‐phase sample. We apply the new variance estimators to two‐phase sampling designs with stratification at the second phase or both phases. We also develop Sen–Yates–Grundy‐type variance estimators of the two‐phase regression estimators that make use of the first‐phase auxiliary data and known population totals of some of the auxiliary variables.  相似文献   

5.
We give a formal definition of a representative sample, but roughly speaking, it is a scaled‐down version of the population, capturing its characteristics. New methods for selecting representative probability samples in the presence of auxiliary variables are introduced. Representative samples are needed for multipurpose surveys, when several target variables are of interest. Such samples also enable estimation of parameters in subspaces and improved estimation of target variable distributions. We describe how two recently proposed sampling designs can be used to produce representative samples. Both designs use distance between population units when producing a sample. We propose a distance function that can calculate distances between units in general auxiliary spaces. We also propose a variance estimator for the commonly used Horvitz–Thompson estimator. Real data as well as illustrative examples show that representative samples are obtained and that the variance of the Horvitz–Thompson estimator is reduced compared with simple random sampling.  相似文献   

6.
A balanced sampling design has the interesting property that Horvitz–Thompson estimators of totals for a set of balancing variables are equal to the totals we want to estimate, therefore the variance of Horvitz–Thompson estimators of variables of interest are reduced in function of their correlations with the balancing variables. Since it is hard to derive an analytic expression for the joint inclusion probabilities, we derive a general approximation of variance based on a residual technique. This approximation is useful even in the particular case of unequal probability sampling with fixed sample size. Finally, a set of numerical studies with an original methodology allows to validate this approximation.  相似文献   

7.
The sampling designs dependent on sample moments of auxiliary variables are well known. Lahiri (Bull Int Stat Inst 33:133–140, 1951) considered a sampling design proportionate to a sample mean of an auxiliary variable. Sing and Srivastava (Biometrika 67(1):205–209, 1980) proposed the sampling design proportionate to a sample variance while Wywiał (J Indian Stat Assoc 37:73–87, 1999) a sampling design proportionate to a sample generalized variance of auxiliary variables. Some other sampling designs dependent on moments of an auxiliary variable were considered e.g. in Wywiał (Some contributions to multivariate methods in, survey sampling. Katowice University of Economics, Katowice, 2003a); Stat Transit 4(5):779–798, 2000) where accuracy of some sampling strategies were compared, too.These sampling designs cannot be useful in the case when there are some censored observations of the auxiliary variable. Moreover, they can be much too sensitive to outliers observations. In these cases the sampling design proportionate to the order statistic of an auxiliary variable can be more useful. That is why such an unequal probability sampling design is proposed here. Its particular cases as well as its conditional version are considered, too. The sampling scheme implementing this sampling design is proposed. The inclusion probabilities of the first and second orders were evaluated. The well known Horvitz–Thompson estimator is taken into account. A ratio estimator dependent on an order statistic is constructed. It is similar to the well known ratio estimator based on the population and sample means. Moreover, it is an unbiased estimator of the population mean when the sample is drawn according to the proposed sampling design dependent on the appropriate order statistic.  相似文献   

8.
Variance estimation under systematic sampling with probability proportional to size is known to be a difficult problem. We attempt to tackle this problem by the bootstrap resampling method. It is shown that the usual way to bootstrap fails to give satisfactory variance estimates. As a remedy, we propose a double bootstrap method which is based on certain working models and involves two levels of resampling. Unlike existing methods which deal exclusively with the Horvitz–Thompson estimator, the double bootstrap method can be used to estimate the variance of any statistic. We illustrate this within the context of both mean and median estimation. Empirical results based on five natural populations are encouraging.  相似文献   

9.
When sampling from a continuous population (or distribution), we often want a rather small sample due to some cost attached to processing the sample or to collecting information in the field. Moreover, a probability sample that allows for design‐based statistical inference is often desired. Given these requirements, we want to reduce the sampling variance of the Horvitz–Thompson estimator as much as possible. To achieve this, we introduce different approaches to using the local pivotal method for selecting well‐spread samples from multidimensional continuous populations. The results of a simulation study clearly indicate that we succeed in selecting spatially balanced samples and improve the efficiency of the Horvitz–Thompson estimator.  相似文献   

10.
In stratified sampling, methods for the allocation of effort among strata usually rely on some measure of within-stratum variance. If we do not have enough information about these variances, adaptive allocation can be used. In adaptive allocation designs, surveys are conducted in two phases. Information from the first phase is used to allocate the remaining units among the strata in the second phase. Brown et al. [Adaptive two-stage sequential sampling, Popul. Ecol. 50 (2008), pp. 239–245] introduced an adaptive allocation sampling design – where the final sample size was random – and an unbiased estimator. Here, we derive an unbiased variance estimator for the design, and consider a related design where the final sample size is fixed. Having a fixed final sample size can make survey-planning easier. We introduce a biased Horvitz–Thompson type estimator and a biased sample mean type estimator for the sampling designs. We conduct two simulation studies on honey producers in Kurdistan and synthetic zirconium distribution in a region on the moon. Results show that the introduced estimators are more efficient than the available estimators for both variable and fixed sample size designs, and the conventional unbiased estimator of stratified simple random sampling design. In order to evaluate efficiencies of the introduced designs and their estimator furthermore, we first review some well-known adaptive allocation designs and compare their estimator with the introduced estimators. Simulation results show that the introduced estimators are more efficient than available estimators of these well-known adaptive allocation designs.  相似文献   

11.
Abstract.  Pareto sampling was introduced by Rosén in the late 1990s. It is a simple method to get a fixed size π ps sample though with inclusion probabilities only approximately as desired. Sampford sampling, introduced by Sampford in 1967, gives the desired inclusion probabilities but it may take time to generate a sample. Using probability functions and Laplace approximations, we show that from a probabilistic point of view these two designs are very close to each other and asymptotically identical. A Sampford sample can rapidly be generated in all situations by letting a Pareto sample pass an acceptance–rejection filter. A new very efficient method to generate conditional Poisson ( CP ) samples appears as a byproduct. Further, it is shown how the inclusion probabilities of all orders for the Pareto design can be calculated from those of the CP design. A new explicit very accurate approximation of the second-order inclusion probabilities, valid for several designs, is presented and applied to get single sum type variance estimates of the Horvitz–Thompson estimator.  相似文献   

12.
The variance of the Horvitz–Thompson estimator for a fixed size Conditional Poisson sampling scheme without replacement and with unequal inclusion probabilities is compared to the variance of the Hansen–Hurwitz estimator for a sampling scheme with replacement. We show, using a theorem by Gabler, that the sampling design without replacement is more efficient than the sampling design with replacement.  相似文献   

13.
Drawing distinct units without replacement and with unequal probabilities from a population is a problem often considered in the literature (e.g. Hanif and Brewer, 1980, Int. Statist. Rev. 48, 317–355). In such a case, the sample mean is a biased estimator of the population mean. For this reason, we use the unbiased Horvitz–Thompson estimator (1951). In this work, we focus our interest on the variance of this estimator. The variance is cumbersome to compute because it requires the calculation of a large number of second-order inclusion probabilities. It would be helpful to use an approximation that does not need heavy calculations. The Hájek (1964) variance approximation provides this advantage as it is free of second-order inclusion probabilities. Hájek (1964) proved that this approximation is valid under restrictive conditions that are usually not fulfilled in practice. In this paper, we give more general conditions and we show that this approximation remains acceptable for most practical problems.  相似文献   

14.
In this paper we explore the possibility to use a particular class of models, known as probabilistic expert systems, to define two classes of estimators of a contingency table in case of stratified sampling designs. The two classes are characterized by the different role of the sampling design: in the first, the sampling design is treated as an additional variable; in the second, it is used only for estimation purposes by means of the survey weights. The bias/variance trade off of these estimators is analyzed and the consequences of model misspecification are illustrated. Furthermore, it is shown that the Horvitz–Thompson estimator belongs to both classes of estimators. It comes out that the Horvitz–Thompson estimator is almost always inefficient but robust. Monte Carlo simulations illustrate the efficiency of the proposed estimators.  相似文献   

15.
Horvitz and Thompson's (HT) [1952. A generalization of sampling without replacement from a finite universe. J. Amer. Statist. Assoc. 47, 663–685] well-known unbiased estimator for a finite population total admits an unbiased estimator for its variance as given by [Yates and Grundy, 1953. Selection without replacement from within strata with probability proportional to size. J. Roy. Statist. Soc. B 15, 253–261], provided the parent sampling design involves a constant number of distinct units in every sample to be chosen. If the design, in addition, ensures uniform non-negativity of this variance estimator, Rao and Wu [1988. Resampling inference with complex survey data. J. Amer. Statist. Assoc. 83, 231–241] have given their re-scaling bootstrap technique to construct confidence interval and to estimate mean square error for non-linear functions of finite population totals of several real variables. Horvitz and Thompson's estimators (HTE) are used to estimate the finite population totals. Since they need to equate the bootstrap variance of the bootstrap estimator to the Yates and Grundy's estimator (YGE) for the variance of the HTE in case of a single variable, i.e., in the linear case the YG variance estimator is required to be positive for the sample usually drawn.  相似文献   

16.
We show that the Hájek (Ann. Math Statist. (1964) 1491) variance estimator can be used to estimate the variance of the Horvitz–Thompson estimator when the Chao sampling scheme (Chao, Biometrika 69 (1982) 653) is implemented. This estimator is simple and can be implemented with any statistical packages. We consider a numerical and an analytic method to show that this estimator can be used. A series of simulations supports our findings.  相似文献   

17.
Under the, notion of superpopulation models, the concept of minimum expected variance is adopted as an optimality criterion for design-unbiased estimators, i.e. unbiased under repeated sampling. In this article, it is shown that the Horvitz-Thompson estimator is optimal among such estimators if and only if it is model-unbiased, i.e. unbiased under the model. The family of linear models is considered and a sample design is suggested to preserve the model-unbiasedness (and hence the optimality) of the Horvitz-Thompson estimator. It is also shown that under these models the Horvitz-Thompson estimator together with the suggested sample design is optimal among design-unbiased estimators with any sample design (of fixed size n ) having non-zero probabilities of inclusion for all population units.  相似文献   

18.
Recognizing that the efficiency in relative risk estimation for the Cox proportional hazards model is largely constrained by the total number of cases, Prentice (1986) proposed the case-cohort design in which covariates are measured on all cases and on a random sample of the cohort. Subsequent to Prentice, other methods of estimation and sampling have been proposed for these designs. We formalize an approach to variance estimation suggested by Barlow (1994), and derive a robust variance estimator based on the influence function. We consider the applicability of the variance estimator to all the proposed case-cohort estimators, and derive the influence function when known sampling probabilities in the estimators are replaced by observed sampling fractions. We discuss the modifications required when cases are missing covariate information. The missingness may occur by chance, and be completely at random; or may occur as part of the sampling design, and depend upon other observed covariates. We provide an adaptation of S-plus code that allows estimating influence function variances in the presence of such missing covariates. Using examples from our current case-cohort studies on esophageal and gastric cancer, we illustrate how our results our useful in solving design and analytic issues that arise in practice.  相似文献   

19.
Systematic sampling is the simplest and easiest of the most common sampling methods. However, when the population size N cannot be evenly divided by the sampling size n, systematic sampling cannot be performed. Not only is it difficult to determine the sampling interval k equivalent to the sampling probability of the sampling unit, but also the sample size will be inconstant and the sample mean will be a biased estimator of the population mean. To solve this problem, this paper introduces an improved method for systematic sampling: the remainder Markov systematic sampling method. This new method involves separately finding the first-order and second-order inclusion probabilities. This approach uses the Horvitz-Thompson estimator as an unbiased estimator of the population mean to find the variance of the estimator. This study examines the effectiveness of the proposed method for different super-populations.  相似文献   

20.
The sample coordination problem involves maximization or minimization of overlap of sampling units in different/repeated surveys. Several optimal techniques using transportation theory, controlled rounding, and controlled selection have been suggested in literature to solve the sample coordination problem. In this article, using the multiple objective programming, we propose a method for sample coordination which facilitates variance estimation using the Horvitz–Thompson estimator. The proposed procedure can be applied to any two-sample surveys having identical universe and stratification. Some examples are discussed to demonstrate the utility of the proposed procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号