首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We derive the minimum risk estimates of the scalar means for Normal, Exponential, and Gamma distributions, under the convex combination of SEL and LINEX loss functions. The functional forms of the proposed estimates for the three examples are general in nature, and for the boundary conditions provide us with the corresponding estimates under SEL and LINEX loss, respectively. We authenticate our proposed models using different iterative as well as meta-heuristic techniques, and through extensive simulation as well as application of live data sets, validate the efficacy of our proposed results.  相似文献   

2.
In this paper we review some results that have been derived on record values for some well known probability density functions and based on m records from Kumaraswamy’s distribution we obtain estimators for the two parameters and the future sth record value. These estimates are derived using the maximum likelihood and Bayesian approaches. In the Bayesian approach, the two parameters are assumed to be random variables and estimators for the parameters and for the future sth record value are obtained, when we have observed m past record values, using the well known squared error loss (SEL) function and a linear exponential (LINEX) loss function. The findings are illustrated with actual and computer generated data.  相似文献   

3.
N. Ohyauchi 《Statistics》2013,47(3):590-604
In most cases, we use a symmetric loss such as the quadratic loss in a usual estimation problem. But, in the non-regular case when the regularity conditions do not necessarily hold, it seems to be more reasonable to choose an asymmetric loss than the symmetric one. In this paper, we consider the Bayes estimation under the linear exponential (LINEX) loss which is regarded as a typical example of asymmetric loss. We also compare the Bayes risks of estimators under the LINEX loss for a family of truncated distributions and a location parameter family of truncated distributions.  相似文献   

4.
Censored data arise naturally in a number of fields, particularly in problems of reliability and survival analysis. There are several types of censoring; in this article, we shall confine ourselves to the right randomly censoring type. Under the Bayesian framework, we study the estimation of parameters in a general framework based on the random censored observations under Linear-Exponential (LINEX) and squared error loss (SEL) functions. As a special case, Weibull model is discussed and the admissibility of estimators of parameters verified. Finally, a simulation study is conducted based on Monte Carlo (MC) method for comparing estimated risks of the estimators obtained.  相似文献   

5.
Consider an estimation problem of a linear combination of population means in a multivariate normal distribution under LINEX loss function. Necessary and sufficient conditions for linear estimators to be admissible are given. Further, it is shown that the result is an extension of the quadratic loss case as well as the univariate normal case.  相似文献   

6.
Based on progressively Type-I interval censored sample, the problem of estimating unknown parameters of a two parameter generalized half-normal(GHN) distribution is considered. Different methods of estimation are discussed. They include the maximum likelihood estimation, midpoint approximation method, approximate maximum likelihood estimation, method of moments, and estimation based on probability plot. Several Bayesian estimates with respect to different symmetric and asymmetric loss functions such as squared error, LINEX, and general entropy is calculated. The Lindley’s approximation method is applied to determine Bayesian estimates. Monte Carlo simulations are performed to compare the performances of the different methods. Finally, analysis is also carried out for a real dataset.  相似文献   

7.
In this paper we consider the problems of estimation and prediction when observed data from a lognormal distribution are based on lower record values and lower record values with inter-record times. We compute maximum likelihood estimates and asymptotic confidence intervals for model parameters. We also obtain Bayes estimates and the highest posterior density (HPD) intervals using noninformative and informative priors under square error and LINEX loss functions. Furthermore, for the problem of Bayesian prediction under one-sample and two-sample framework, we obtain predictive estimates and the associated predictive equal-tail and HPD intervals. Finally for illustration purpose a real data set is analyzed and simulation study is conducted to compare the methods of estimation and prediction.  相似文献   

8.
In this article we discuss Bayesian estimation of Kumaraswamy distributions based on three different types of censored samples. We obtain Bayes estimates of the model parameters using two different types of loss functions (LINEX and Quadratic) under each censoring scheme (left censoring, singly type-II censoring, and doubly type-II censoring) using Monte Carlo simulation study with posterior risk plots for each different choices of the model parameters. Also, detailed discussion regarding elicitation of the hyperparameters under the dependent prior setup is discussed. If one of the shape parameters is known then closed form expressions of the Bayes estimates corresponding to posterior risk under both the loss functions are available. To provide the efficacy of the proposed method, a simulation study is conducted and the performance of the estimation is quite interesting. For illustrative purpose, real-life data are considered.  相似文献   

9.
This paper is concerned with using the E-Bayesian method for computing estimates of the exponentiated distribution family parameter. Based on the LINEX loss function, formulas of E-Bayesian estimation for unknown parameter are given, these estimates are derived based on a conjugate prior. Moreover, property of E-Bayesian estimation—the relationship between of E-Bayesian estimations under different prior distributions of the hyper parameters are also provided. A comparison between the new method and the corresponding maximum likelihood techniques is conducted using the Monte Carlo simulation. Finally, combined with the golfers income data practical problem are calculated, the results show that the proposed method is feasible and convenient for application.  相似文献   

10.
This paper addresses the problems of frequentist and Bayesian estimation for the unknown parameters of generalized Lindley distribution based on lower record values. We first derive the exact explicit expressions for the single and product moments of lower record values, and then use these results to compute the means, variances and covariance between two lower record values. We next obtain the maximum likelihood estimators and associated asymptotic confidence intervals. Furthermore, we obtain Bayes estimators under the assumption of gamma priors on both the shape and the scale parameters of the generalized Lindley distribution, and associated the highest posterior density interval estimates. The Bayesian estimation is studied with respect to both symmetric (squared error) and asymmetric (linear-exponential (LINEX)) loss functions. Finally, we compute Bayesian predictive estimates and predictive interval estimates for the future record values. To illustrate the findings, one real data set is analyzed, and Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and prediction.  相似文献   

11.
This article investigates the performance of the shrinkage estimator (SE) of the parameters of a simple linear regression model under the LINEX loss criterion. The risk function of the estimator under the asymmetric LINEX loss is derived and analyzed. The moment-generating functions and the first two moments of the estimators are also obtained. The risks of the SE have been compared numerically with that of pre-test and least-square estimators (LSEs) under the LINEX loss criterion. The numerical comparison reveals that under certain conditions the LSE is inadmissible, and the SE is the best among the three estimators.  相似文献   

12.
In this article, the preliminary test estimator is considered under the BLINEX loss function. The problem under consideration is the estimation of the location parameter from a normal distribution. The risk under the null hypothesis for the preliminary test estimator, the exact risk function for restricted maximum likelihood and approximated risk function for the unrestricted maximum likelihood estimator, are derived under BLINEX loss and the different risk structures are compared to one another both analytically and computationally. As a motivation on the use of BLINEX rather than LINEX, the risk for the preliminary test estimator under BLINEX loss is compared to the risk of the preliminary test estimator under LINEX loss and it is shown that the LINEX expected loss is higher than BLINEX expected loss. Furthermore, two feasible Bayes estimators are derived under BLINEX loss, and a feasible Bayes preliminary test estimator is defined and compared to the classical preliminary test estimator.  相似文献   

13.
In this paper, a competing risks model is considered under adaptive type-I progressive hybrid censoring scheme (AT-I PHCS). The lifetimes of the latent failure times have Weibull distributions with the same shape parameter. We investigate the maximum likelihood estimation of the parameters. Bayes estimates of the parameters are obtained based on squared error and LINEX loss functions under the assumption of independent gamma priors. We propose to apply Markov Chain Monte Carlo (MCMC) techniques to carry out a Bayesian estimation procedure and in turn calculate the credible intervals. To evaluate the performance of the estimators, a simulation study is carried out.  相似文献   

14.
We consider the estimation of the error variance of a linear regression model where prior information is available in the form of an (uncertain) inequality constraint on the coefficients. Previous studies on this and other related problems use the squared error loss in comparing estimator’s performance. Here, by adopting the asymmetric LINEX loss function, we derive and numerically evaluate the exact risks of the inequality constrained estimator and the inequality pre-test estimator which results after a preliminary test for an inequality constraint on the coefficients. The risks based on squared error loss are special cases of our results, and we draw appropriate comparisons.  相似文献   

15.
We consider the stratified regression superpopulation model and obtain Bayes predictor of the finite population mean under Zellner's two-criterion balanced loss function (BLF). BLF predictor simplifies to a linear combination of the sample and predictive means. Furthermore, it reduces to some of the well-known classical and Bayes predictors. Relative losses and relative savings loss are obtained to investigate loss robustness of the BLF predictor. It is found to perform better than the usual sample mean as well as the predictive mean in the minimal Bayes predictive expected loss sense.  相似文献   

16.
This paper explores properties of the E-Bayesian and hierarchical Bayesian estimations of the system reliability parameter. E-Bayesian estimation and hierarchical Bayesian estimation of Pascal distribution's parameter under two loss function, LINEX loss function and entropy loss function can be found. We obtained limits of that the E-Bayesian estimation and hierarchical Bayesian estimation are equal. A Monte Carlo simulation is used to compare performances of the two methods.  相似文献   

17.
In this paper, the problem of estimating unknown parameters of a two-parameter Kumaraswamy-Exponential (Kw-E) distribution is considered based on progressively type-II censored sample. The maximum likelihood (ML) estimators of the parameters are obtained. Bayes estimates are also obtained using different loss functions such as squared error, LINEX and general entropy. Lindley's approximation method is used to evaluate these Bayes estimates. Monte Carlo simulation is used for numerical comparison between various estimates developed in this paper.  相似文献   

18.
This paper is concerned with estimation of location and scale parameters of an exponential distribution when the location parameter is bounded above by a known constant. We propose estimators which are better than the standard estimators in the unrestricted case with respect to the suitable choice of LINEX loss. The admissibility of the modified Pitman estimators with respect to the LINEX loss is proved. Finally the theory developed is applied to the problem of estimating the location and scale parameters of two exponential distributions when the location parameters are ordered.  相似文献   

19.
Suppose manufactured items have failure times distributed with the two-parameter exponential density function à-le-(x-μ)/à (x≥μ≥0). The paper considers estimation of the guarantee time μ and mean life after warranty à. Properties of various estimators are given for both separate and simultaneous estimation of μ and à. Criteria for comparing estimators are entropy loss, LINEX loss, and (generalized) Pitman nearness.  相似文献   

20.
We consider robust Bayesian prediction of a function of unobserved data based on observed data under an asymmetric loss function. Under a general linear-exponential posterior risk function, the posterior regret gamma-minimax (PRGM), conditional gamma-minimax (CGM), and most stable (MS) predictors are obtained when the prior distribution belongs to a general class of prior distributions. We use this general form to find the PRGM, CGM, and MS predictors of a general linear combination of the finite population values under LINEX loss function on the basis of two classes of priors in a normal model. Also, under the general ε-contamination class of prior distributions, the PRGM predictor of a general linear combination of the finite population values is obtained. Finally, we provide a real-life example to predict a finite population mean and compare the estimated risk and risk bias of the obtained predictors under the LINEX loss function by a simulation study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号