首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consider an ergodic Markov chain X(t) in continuous time with an infinitesimal matrix Q = (qij) defined on a finite state space {0, 1,…, N}. In this note, we prove that if X(t) is skip-free positive (negative, respectively), i.e., qij, = 0 for j > i+ 1 (i > j+ 1), then the transition probability pij(t) = Pr[X(t)=j | X(0) =i] can be represented as a linear combination of p0N(t) (p(m)(N0)(t)), 0 ≤ m ≤N, where f(m)(t) denotes the mth derivative of a function f(t) with f(0)(t) =f(t). If X(t) is a birth-death process, then pij(t) is represented as a linear combination of p0N(m)(t), 0 ≤mN - |i-j|.  相似文献   

2.
Let GF(s) be the finite field with s elements.(Thus, when s=3, the elements of GF(s) are 0, 1 and 2.)Let A(r×n), of rank r, and ci(i=1,…,f), (r×1), be matrices over GF(s). (Thus, for n=4, r=2, f=2, we could have A=[11100121], c1=[10], c2=[02].) Let Ti (i=1,…,f) be the flat in EG(n, s) consisting of the set of all the sn?r solutions of the equations At=ci, wheret′=(t1,…,tn) is a vector of variables.(Thus, EG(4, 3) consists of the 34=81 points of the form (t1,t2,t3,t4), where t's take the values 0,1,2 (in GF(3)). The number of solutions of the equations At=ci is sn?r, where r=Rank(A), and the set of such solutions is said to form an (n?r)-flat, i.e. a flat of (n?r) dimensions. In our example, both T1 and T2 are 2-flats consisting of 34?2=9 points each. The flats T1,T2,…,Tf are said to be parallel since, clearly, no two of them can have a common point. In the example, the points of T1 are (1000), (0011), (2022), (0102), (2110), (1121), (2201), (1212) and (0220). Also, T2 consists of (0002), (2010), (1021), (2101), (1112), (0120), (1200), (0211) and (2222).) Let T be the fractional design for a sn symmetric factorial experiment obtained by taking T1,T2,…,Tf together. (Thus, in the example, 34=81 treatments of the 34 factorial experiment correspond one-one with the points of EG(4,3), and T will be the design (i.e. a subset of the 81 treatments) consisting of the 18 points of T1 and T2 enumerated above.)In this paper, we lay the foundation of the general theory of such ‘parallel’ types of designs. We define certain functions of A called the alias component matrices, and use these to partition the coefficient matrix X (n×v), occuring in the corresponding linear model, into components X.j(j=0,1,…,g), such that the information matrix X is the direct sum of the X′.jX.j. Here, v is the total number of parameters, which consist of (possibly μ), and a (general) set of (geometric) factorial effects (each carrying (s?1) degrees of freedom as usual). For j≠0, we show that the spectrum of X′.jX.j does not change if we change (in a certain important way) the usual definition of the effects. Assuming that such change has been adopted, we consider the partition of the X.j into the Xij (i=1,…,f). Furthermore, the Xij are in turn partitioned into smaller matrices (which we shall here call the) Xijh. We show that each Xijh can be factored into a product of 3 matrices J, ζ (not depending on i,j, and h) and Q(j,h,i)where both the Kronecker and ordinary product are used. We introduce a ring R using the additive groups of the rational field and GF(s), and show that the Q(j,h,i) belong to a ring isomorphic to R. When s is a prime number, we show that R is the cyclotomic field. Finally, we show that the study of the X.j and X′.jX.j can be done in a much simpler manner, in terms of certain relatively small sized matrices over R.  相似文献   

3.
《随机性模型》2013,29(4):467-482
Abstract

In this paper, we show that an arbitrary tree structured quasi‐birth–death (QBD) Markov chain can be embedded in a tree‐like QBD process with a special structure. Moreover, we present an algebraic proof that applying the natural fixed point iteration (FPI) to the nonlinear matrix equation V = B + ∑ s=1 d U s (I ? V)?1 D s that solves the tree‐like QBD process, is equivalent to the more complicated iterative algorithm presented by Yeung and Alfa (1996).  相似文献   

4.
Let {X j , j ≥ 1} be a strictly stationary negatively or positively associated sequence of real valued random variables with unknown distribution function F(x). On the basis of the random variables {X j , j ≥ 1}, we propose a smooth recursive kernel-type estimate of F(x), and study asymptotic bias, quadratic-mean consistency and asymptotic normality of the recursive kernel-type estimator under suitable conditions.  相似文献   

5.
In this article, we first give a version with continuous paths for stochastic convolution ∫t0U(t, s)φ(s)dW(s) driven by a Wiener process W in a Hilbert space under weaker conditions. Based on the Picard approximation and the factorization method, we prove the existence, uniqueness and regularity of mild solutions for non-autonomous semilinear stochastic evolution equations with more general assumptions on the coefficients. As an application, we obtain the Feller property of the associated semigroup.  相似文献   

6.
Abstract

We introduce here the truncated version of the unified skew-normal (SUN) distributions. By considering a special truncations for both univariate and multivariate cases, we derive the joint distribution of consecutive order statistics X(r, ..., r + k) = (X(r), ..., X(r + K))T from an exchangeable n-dimensional normal random vector X. Further we show that the conditional distributions of X(r + j, ..., r + k) given X(r, ..., r + j ? 1), X(r, ..., r + k) given (X(r) > t)?and X(r, ..., r + k) given (X(r + k) < t) are special types of singular SUN distributions. We use these results to determine some measures in the reliability theory such as the mean past life (MPL) function and mean residual life (MRL) function.  相似文献   

7.
Let X ? (r), r ≥ 1, denote generalized order statistics based on an arbitrary distribution function F with finite pth absolute moment for some 1 ≤ p ≤ ∞. We present sharp upper bounds on E(X ? (s) ? X ? (r)), 1 ≤ r < s, for F being either general or life distribution. The bounds are expressed in various scale units generated by pth central absolute or raw moments of F, respectively. The distributions achieving the bounds are specified.  相似文献   

8.
We investigate the asymptotic behavior of the probability density function (pdf) and the cumulative distribution function (cdf) of Student's t-distribution with ν > 0 degrees of freedom (t ν for short) for ν tending to infinity when the argument x = x ν of the pdf (cdf) depends on ν and tends to ± ∞ (?∞). To this end, we consider the ratio of the pdf's (cdf's) of the t ν- and the standard normal distribution. Depending on the choice of the argument x ν, the pdf-ratio (cdf-ratio) tends to 1, a fixed value greater than 1, or to ∞. As a byproduct, we obtain a result for Mill' ratio when x ν → ?∞.  相似文献   

9.
In this article, we study large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j, where {X1j, j ? 1} is a sequence of widely upper orthant dependent (WUOD) random variables with non identical distributions {F1j(x), j ? 1}, {X2j, j ? 1} is a sequence of independent identically distributed random variables, n1(t) and n2(t) are two positive integer-valued functions, and {Ni(t), t ? 0}2i = 1 with ENi(t) = λi(t) are two counting processes independent of {Xij, j ? 1}2i = 1. Under several assumptions, some results of precise large deviations for non random difference and random difference are derived, and some corresponding results are extended.  相似文献   

10.
In this article, a semi-Markovian random walk with delay and a discrete interference of chance (X(t)) is considered. It is assumed that the random variables ζ n , n = 1, 2,…, which describe the discrete interference of chance form an ergodic Markov chain with ergodic distribution which is a gamma distribution with parameters (α, λ). Under this assumption, the asymptotic expansions for the first four moments of the ergodic distribution of the process X(t) are derived, as λ → 0. Moreover, by using the Riemann zeta-function, the coefficients of these asymptotic expansions are expressed by means of numerical characteristics of the summands, when the process considered is a semi-Markovian Gaussian random walk with small drift β.  相似文献   

11.
We consider the specific transformation of a Wiener process {X(t), t ≥ 0} in the presence of an absorbing barrier a that results when this process is “time-locked” with respect to its first passage time T a through a criterion level a, and the evolution of X(t) is considered backwards (retrospectively) from T a . Formally, we study the random variables defined by Y(t) ≡ X(T a  ? t) and derive explicit results for their density and mean, and also for their asymptotic forms. We discuss how our results can aid interpretations of time series “response-locked” to their times of crossing a criterion level.  相似文献   

12.
13.
Let X  = (X, Y) be a pair of lifetimes whose dependence structure is described by an Archimedean survival copula, and let X t  = [(X ? t, Y ? t) | X > t, Y > t] denotes the corresponding pair of residual lifetimes after time t ≥ 0. Multivariate aging notions, defined by means of stochastic comparisons between X and X t , with t ≥ 0, were studied in Pellerey (2008 Pellerey , F. ( 2008 ). On univariate and bivariate aging for dependent lifetimes with Archimedean survival copulas . Kybernetika 44 : 795806 .[Web of Science ®] [Google Scholar]), who considered pairs of lifetimes having the same marginal distribution. Here, we present the generalizations of his results, considering both stochastic comparisons between X t and X t+s for all t, s ≥ 0 and the case of dependent lifetimes having different distributions. Comparisons between two different pairs of residual lifetimes, at any time t ≥ 0, are discussed as well.  相似文献   

14.
In this paper, we investigate the use of the contribution to the sample mean plot (CSM plot) as a graphical tool for sensitivity analysis (SA) of computational models. We first provide an exact formula that links, for each uncertain model input Xj, the CSM plot Cj(·) with the first-order variance-based sensitivity index Sj. We then build a new estimate for Sj using polynomial regression of the CSM plot. This estimation procedure allows the computation of Sj from given data, without any SA-specific design of experiment. Numerical results show that this new Sj estimate is efficient for large sample sizes, but that at small sample sizes it does not compare well with other Sj estimation techniques based on given data, such as the effective algorithm for computing global sensitivity indices method or metamodel-based approaches.  相似文献   

15.
In this article, we propose a denoising methodology in the wavelet domain based on a Bayesian hierarchical model using Double Weibull prior. We propose two estimators, one based on posterior mean (Double Weibull Wavelet Shrinker, DWWS) and the other based on larger posterior mode (DWWS-LPM), and show how to calculate them efficiently. Traditionally, mixture priors have been used for modeling sparse wavelet coefficients. The interesting feature of this article is the use of non-mixture prior. We show that the methodology provides good denoising performance, comparable even to state-of-the-art methods that use mixture priors and empirical Bayes setting of hyperparameters, which is demonstrated by extensive simulations on standardly used test functions. An application to real-word dataset is also considered.  相似文献   

16.
In this paper we describe active set type algorithms for minimization of a smooth function under general order constraints, an important case being functions on the set of bimonotone r×s matrices. These algorithms can be used, for instance, to estimate a bimonotone regression function via least squares or (a smooth approximation of) least absolute deviations. Another application is shrinkage estimation in image denoising or, more generally, regression problems with two ordinal factors after representing the data in a suitable basis which is indexed by pairs (i,j)∈{1,…,r}×{1,…,s}. Various numerical examples illustrate our methods.  相似文献   

17.
18.
Assume that there are two types of insurance contracts in an insurance company, and the ith related claims are denoted by {Xij, j ? 1}, i = 1, 2. In this article, the asymptotic behaviors of precise large deviations for non random difference ∑n1(t)j = 1X1j ? ∑n2(t)j = 1X2j and random difference ∑N1(t)j = 1X1j ? ∑N2(t)j = 1X2j are investigated, and under several assumptions, some corresponding asymptotic formulas are obtained.  相似文献   

19.
This article investigates parallel systems with n independent but not identically distributed (INID) components. Under the condition that, at time t 1 (t 1 > 0) the total number of failures of the components is r (r < n), and at time t 2 (t 2 ≥ t 1) the sys-tem is still working or it has failed, the mean residual life (MRL) function of the parallel system and the mean past lifetime (MPL) function of the components are conducted. Some representations and corresponding properties of the MRL function and the MPL function under several specific conditions are obtained.  相似文献   

20.
This article shows how a non-decimated wavelet packet transform (NWPT) can be used to model a response time series, Y t, in terms of an explanatory time series, X t. The proposed computational technique transforms the explanatory time series into a NWPT representation and then uses standard statistical modelling methods to identify which wavelet packets are useful for modelling the response time series. We exhibit S-Plus functions from the freeware WaveThresh package that implement our methodology.The proposed modelling methodology is applied to an important problem from the wind energy industry: how to model wind speed at a target location using wind speed and direction from a reference location. Our method improves on existing target site wind speed predictions produced by widely used industry standard techniques. However, of more importance, our NWPT representation produces models to which we can attach physical and scientific interpretations and in the wind example enable us to understand more about the transfer of wind energy from site to site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号