首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 331 毫秒
1.
It is generally assumed that the likelihood ratio statistic for testing the null hypothesis that data arise from a homoscedastic normal mixture distribution versus the alternative hypothesis that data arise from a heteroscedastic normal mixture distribution has an asymptotic χ 2 reference distribution with degrees of freedom equal to the difference in the number of parameters being estimated under the alternative and null models under some regularity conditions. Simulations show that the χ 2 reference distribution will give a reasonable approximation for the likelihood ratio test only when the sample size is 2000 or more and the mixture components are well separated when the restrictions suggested by Hathaway (Ann. Stat. 13:795–800, 1985) are imposed on the component variances to ensure that the likelihood is bounded under the alternative distribution. For small and medium sample sizes, parametric bootstrap tests appear to work well for determining whether data arise from a normal mixture with equal variances or a normal mixture with unequal variances.  相似文献   

2.
Maclean et al. (1976) applied a specific Box-Cox transformation to test for mixtures of distributions against a single distribution. Their null hypothesis is that a sample of n observations is from a normal distribution with unknown mean and variance after a restricted Box-Cox transformation. The alternative is that the sample is from a mixture of two normal distributions, each with unknown mean and unknown, but equal, variance after another restricted Box-Cox transformation. We developed a computer program that calculated the maximum likelihood estimates (MLEs) and likelihood ratio test (LRT) statistic for the above. Our algorithm for the calculation of the MLEs of the unknown parameters used multiple starting points to protect against convergence to a local rather than global maximum. We then simulated the distribution of the LRT for samples drawn from a normal distribution and five Box-Cox transformations of a normal distribution. The null distribution appeared to be the same for the Box-Cox transformations studied and appeared to be distributed as a chi-square random variable for samples of 25 or more. The degrees of freedom parameter appeared to be a monotonically decreasing function of the sample size. The null distribution of this LRT appeared to converge to a chi-square distribution with 2.5 degrees of freedom. We estimated the critical values for the 0.10, 0.05, and 0.01 levels of significance.  相似文献   

3.
This article considers statistical inference for partially linear varying-coefficient models when the responses are missing at random. We propose a profile least-squares estimator for the parametric component with complete-case data and show that the resulting estimator is asymptotically normal. To avoid to estimate the asymptotic covariance in establishing confidence region of the parametric component with the normal-approximation method, we define an empirical likelihood based statistic and show that its limiting distribution is chi-squared distribution. Then, the confidence regions of the parametric component with asymptotically correct coverage probabilities can be constructed by the result. To check the validity of the linear constraints on the parametric component, we construct a modified generalized likelihood ratio test statistic and demonstrate that it follows asymptotically chi-squared distribution under the null hypothesis. Then, we extend the generalized likelihood ratio technique to the context of missing data. Finally, some simulations are conducted to illustrate the proposed methods.  相似文献   

4.
This paper investigates the hypothesis test of the parametric component in partially linear errors-in-variables (EV) model with random censorship. We construct two test statistics based on the difference of the corrected residual sum of squares and empirical likelihood ratio under the null and alternative hypotheses. It is shown that the limiting distributions of the proposed test statistics are both weighted sum of independent standard chi-squared distribution with one degree of freedom under the null hypothesis. Based on the adjusted test statistics, we further develop two new types of test procedures. Finite sample performance of the proposed test procedures is evaluated by extensive simulation studies.  相似文献   

5.
Summary.  We consider a finite mixture model with k components and a kernel distribution from a general one-parameter family. The problem of testing the hypothesis k =2 versus k 3 is studied. There has been no general statistical testing procedure for this problem. We propose a modified likelihood ratio statistic where under the null and the alternative hypotheses the estimates of the parameters are obtained from a modified likelihood function. It is shown that estimators of the support points are consistent. The asymptotic null distribution of the modified likelihood ratio test proposed is derived and found to be relatively simple and easily applied. Simulation studies for the asymptotic modified likelihood ratio test based on finite mixture models with normal, binomial and Poisson kernels suggest that the test proposed performs well. Simulation studies are also conducted for a bootstrap method with normal kernels. An example involving foetal movement data from a medical study illustrates the testing procedure.  相似文献   

6.
The phenotype of a quantitative trait locus (QTL) is often modeled by a finite mixture of normal distributions. If the QTL effect depends on the number of copies of a specific allele one carries, then the mixture model has three components. In this case, the mixing proportions have a binomial structure according to the Hardy–Weinberg equilibrium. In the search for QTL, a significance test of homogeneity against the Hardy–Weinberg normal mixture model alternative is an important first step. The LOD score method, a likelihood ratio test used in genetics, is a favored choice. However, there is not yet a general theory for the limiting distribution of the likelihood ratio statistic in the presence of unknown variance. This paper derives the limiting distribution of the likelihood ratio statistic, which can be described by the supremum of a quadratic form of a Gaussian process. Further, the result implies that the distribution of the modified likelihood ratio statistic is well approximated by a chi-squared distribution. Simulation results show that the approximation has satisfactory precision for the cases considered. We also give a real-data example.  相似文献   

7.
Testing the equal means hypothesis of a bivariate normal distribution with homoscedastic varlates when the data are incomplete is considered. If the correlational parameter, ρ, is known, the well-known theory of the general linear model is easily employed to construct the likelihood ratio test for the two sided alternative. A statistic, T, for the case of ρ unknown is proposed by direct analogy to the likelihood ratio statistic when ρ is known. The null and nonnull distribution of T is investigated by Monte Carlo techniques. It is concluded that T may be compared to the conventional t distribution for testing the null hypothesis and that this procedure results in a substantial increase in power-efficiency over the procedure based on the paired t test which ignores the incomplete data. A Monte Carlo comparison to two statistics proposed by Lin and Stivers (1974) suggests that the test based on T is more conservative than either of their statistics.  相似文献   

8.
Although the asymptotic distributions of the likelihood ratio for testing hypotheses of null variance components in linear mixed models derived by Stram and Lee [1994. Variance components testing in longitudinal mixed effects model. Biometrics 50, 1171–1177] are valid, their proof is based on the work of Self and Liang [1987. Asymptotic properties of maximum likelihood estimators and likelihood tests under nonstandard conditions. J. Amer. Statist. Assoc. 82, 605–610] which requires identically distributed random variables, an assumption not always valid in longitudinal data problems. We use the less restrictive results of Vu and Zhou [1997. Generalization of likelihood ratio tests under nonstandard conditions. Ann. Statist. 25, 897–916] to prove that the proposed mixture of chi-squared distributions is the actual asymptotic distribution of such likelihood ratios used as test statistics for null variance components in models with one or two random effects. We also consider a limited simulation study to evaluate the appropriateness of the asymptotic distribution of such likelihood ratios in moderately sized samples.  相似文献   

9.
In this paper, we develop modified versions of the likelihood ratio test for multivariate heteroskedastic errors-in-variables regression models. The error terms are allowed to follow a multivariate distribution in the elliptical class of distributions, which has the normal distribution as a special case. We derive the Skovgaard-adjusted likelihood ratio statistics, which follow a chi-squared distribution with a high degree of accuracy. We conduct a simulation study and show that the proposed tests display superior finite sample behaviour as compared to the standard likelihood ratio test. We illustrate the usefulness of our results in applied settings using a data set from the WHO MONICA Project on cardiovascular disease.  相似文献   

10.
Summary.  We consider the problem of testing null hypotheses that include restrictions on the variance component in a linear mixed model with one variance component and we derive the finite sample and asymptotic distribution of the likelihood ratio test and the restricted likelihood ratio test. The spectral representations of the likelihood ratio test and the restricted likelihood ratio test statistics are used as the basis of efficient simulation algorithms of their null distributions. The large sample χ 2 mixture approximations using the usual asymptotic theory for a null hypothesis on the boundary of the parameter space have been shown to be poor in simulation studies. Our asymptotic calculations explain these empirical results. The theory of Self and Liang applies only to linear mixed models for which the data vector can be partitioned into a large number of independent and identically distributed subvectors. One-way analysis of variance and penalized splines models illustrate the results.  相似文献   

11.
ABSTRACT

This article develops an adjusted empirical likelihood (EL) method for the additive hazards model. The adjusted EL ratio is shown to have a central chi-squared limiting distribution under the null hypothesis. We also evaluate its asymptotic distribution as a non central chi-squared distribution under the local alternatives of order n? 1/2, deriving the expression for the asymptotic power function. Simulation studies and a real example are conducted to evaluate the finite sample performance of the proposed method. Compared with the normal approximation-based method, the proposed method tends to have more larger empirical power and smaller confidence regions with comparable coverage probabilities.  相似文献   

12.
Testing for homogeneity in finite mixture models has been investigated by many researchers. The asymptotic null distribution of the likelihood ratio test (LRT) is very complex and difficult to use in practice. We propose a modified LRT for homogeneity in finite mixture models with a general parametric kernel distribution family. The modified LRT has a χ-type of null limiting distribution and is asymptotically most powerful under local alternatives. Simulations show that it performs better than competing tests. They also reveal that the limiting distribution with some adjustment can satisfactorily approximate the quantiles of the test statistic, even for moderate sample sizes.  相似文献   

13.
In this article, we propose a new empirical likelihood method for linear regression analysis with a right censored response variable. The method is based on the synthetic data approach for censored linear regression analysis. A log-empirical likelihood ratio test statistic for the entire regression coefficients vector is developed and we show that it converges to a standard chi-squared distribution. The proposed method can also be used to make inferences about linear combinations of the regression coefficients. Moreover, the proposed empirical likelihood ratio provides a way to combine different normal equations derived from various synthetic response variables. Maximizing this empirical likelihood ratio yields a maximum empirical likelihood estimator which is asymptotically equivalent to the solution of the estimating equation that are optimal linear combination of the original normal equations. It improves the estimation efficiency. The method is illustrated by some Monte Carlo simulation studies as well as a real example.  相似文献   

14.
The negative binomial (NB) is frequently used to model overdispersed Poisson count data. To study the effect of a continuous covariate of interest in an NB model, a flexible procedure is used to model the covariate effect by fixed-knot cubic basis-splines or B-splines with a second-order difference penalty on the adjacent B-spline coefficients to avoid undersmoothing. A penalized likelihood is used to estimate parameters of the model. A penalized likelihood ratio test statistic is constructed for the null hypothesis of the linearity of the continuous covariate effect. When the number of knots is fixed, its limiting null distribution is the distribution of a linear combination of independent chi-squared random variables, each with one degree of freedom. The smoothing parameter value is determined by setting a specified value equal to the asymptotic expectation of the test statistic under the null hypothesis. The power performance of the proposed test is studied with simulation experiments.  相似文献   

15.
In this paper, we revisit the problem of testing of the hypothesis of circular symmetry of a bivariate distribution. We propose some nonparametric tests based on sector counts. These include tests based on chi-square goodness-of-fit test, the classical likelihood ratio, mean deviation, and the range. The proposed tests are easy to implement and the exact null distributions for small sample sizes of the test statistics are obtained. Two examples with small and large data sets are given to illustrate the application of the tests proposed. For small and moderate sample sizes, the performances of the proposed tests are evaluated using empirical powers (empirical sizes are also reported). Also, we evaluate the performance of these count-based tests with adaptations of several well-known tests such as the Kolmogorov–Smirnov-type tests, tests based on kernel density estimator, and the Wilcoxon-type tests. It is observed that among the count-based tests the likelihood ratio test performs better.  相似文献   

16.
We propose a multivariate extension of the univariate chi-squared normality test. Using a known result for the distribution of quadratic forms in normal variables, we show that the proposed test statistic has an approximated chi-squared distribution under the null hypothesis of multivariate normality. As in the univariate case, the new test statistic is based on a comparison of observed and expected frequencies for specified events in sample space. In the univariate case, these events are the standard class intervals, but in the multivariate extension we propose these become hyper-ellipsoidal annuli in multivariate sample space. We assess the performance of the new test using Monte Carlo simulation. Keeping the type I error rate fixed, we show that the new test has power that compares favourably with other standard normality tests, though no uniformly most powerful test has been found. We recommend the new test due to its competitive advantages.  相似文献   

17.
A semiparametric logistic regression model is proposed in which its nonparametric component is approximated with fixed-knot cubic B-splines. To assess the linearity of the nonparametric component, we construct a penalized likelihood ratio test statistic. When the number of knots is fixed, the null distribution of the test statistic is shown to be asymptotically the distribution of a linear combination of independent chi-squared random variables, each with one degree of freedom. We set the asymptotic null expectation of this test statistic equal to a value to determine the smoothing parameter value. Monte Carlo experiments are conducted to investigate the performance of the proposed test. Its practical use is illustrated with a real-life example.  相似文献   

18.
In this article, we introduce a bivariate sign test for the one-sample bivariate location model using a bivariate ranked set sample (BVRSS). We show that the proposed test is asymptotically more efficient than its counterpart sign test based on a bivariate simple random sample (BVSRS). The asymptotic null distribution and the non centrality parameter are derived. The asymptotic distribution of the vector of sample median as an estimator of the locations of the bivariate model is introduced. Theoretical and numerical comparisons of the asymptotic efficiency of the BVRSS sign test with respect to the BVSRS sign test are also given.  相似文献   

19.
In a clinical trial, the responses to the new treatment may vary among patient subsets with different characteristics in a biomarker. It is often necessary to examine whether there is a cutpoint for the biomarker that divides the patients into two subsets of those with more favourable and less favourable responses. More generally, we approach this problem as a test of homogeneity in the effects of a set of covariates in generalized linear regression models. The unknown cutpoint results in a model with nonidentifiability and a nonsmooth likelihood function to which the ordinary likelihood methods do not apply. We first use a smooth continuous function to approximate the indicator function defining the patient subsets. We then propose a penalized likelihood ratio test to overcome the model irregularities. Under the null hypothesis, we prove that the asymptotic distribution of the proposed test statistic is a mixture of chi-squared distributions. Our method is based on established asymptotic theory, is simple to use, and works in a general framework that includes logistic, Poisson, and linear regression models. In extensive simulation studies, we find that the proposed test works well in terms of size and power. We further demonstrate the use of the proposed method by applying it to clinical trial data from the Digitalis Investigation Group (DIG) on heart failure.  相似文献   

20.
We propose two retrospective test statistics for testing the vector of odds ratio parameters under the logistic regression model based on case–control data by exploiting the density ratio structure under a two-sample semiparametric model, which is equivalent to the assumed logistic regression model. The proposed test statistics are based on Kullback–Leibler entropy distance and are particularly relevant to the case–control sampling plan. These two test statistics have identical asymptotic chi-squared distributions under the null hypothesis and identical asymptotic noncentral chi-squared distributions under local alternatives to the null hypothesis. Moreover, the proposed test statistics require computation of the maximum semiparametric likelihood estimators of the underlying parameters, but are otherwise easily computed. We present some results on simulation and on the analysis of two real data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号