首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quasi-likelihood nonlinear models (QLNM) are a further extension of generalized linear models by only specifying the expectation and variance functions of the response variable. In this article, some mild regularity conditions are proposed. These regularity conditions, respectively, assure the existence, strong consistency, and the asymptotic normality of the maximum quasi-likelihood estimator (MQLE) in QLNM.  相似文献   

2.
    
Affiliation network is one kind of two-mode social network with two different sets of nodes (namely, a set of actors and a set of social events) and edges representing the affiliation of the actors with the social events. Although a number of statistical models are proposed to analyze affiliation networks, the asymptotic behaviors of the estimator are still unknown or have not been properly explored. In this article, we study an affiliation model with the degree sequence as the exclusively natural sufficient statistic in the exponential family distributions. We establish the uniform consistency and asymptotic normality of the maximum likelihood estimator when the numbers of actors and events both go to infinity. Simulation studies and a real data example demonstrate our theoretical results.  相似文献   

3.
Summary.  The paper considers the double-autoregressive model y t  =  φ y t −1+ ɛ t with ɛ t  =     . Consistency and asymptotic normality of the estimated parameters are proved under the condition E  ln | φ  +√ α η t |<0, which includes the cases with | φ |=1 or | φ |>1 as well as     . It is well known that all kinds of estimators of φ in these cases are not normal when ɛ t are independent and identically distributed. Our result is novel and surprising. Two tests are proposed for testing stationarity of the model and their asymptotic distributions are shown to be a function of bivariate Brownian motions. Critical values of the tests are tabulated and some simulation results are reported. An application to the US 90-day treasury bill rate series is given.  相似文献   

4.
We analyze a variant of the EGARCH model which captures the variation of the intra-day price. We study the asymptotic behavior of the estimators for the parameters of the model. We also illustrate our theoretical results by empirical studies.  相似文献   

5.
    
For clinical trials on neurodegenerative diseases such as Parkinson's or Alzheimer's, the distributions of psychometric measures for both placebo and treatment groups are generally skewed because of the characteristics of the diseases. Through an analytical, but computationally intensive, algorithm, we specifically compare power curves between 3- and 7-category ordinal logistic regression models in terms of the probability of detecting the treatment effect, assuming a symmetric distribution or skewed distributions for the placebo group. The proportional odds assumption under the ordinal logistic regression model plays an important role in these comparisons. The results indicate that there is no significant difference in the power curves between 3-category and 7-category response models where a symmetric distribution is assumed for the placebo group. However, when the skewness becomes more extreme for the placebo group, the loss of power can be substantial.  相似文献   

6.
    
ABSTRACT

This article investigates a quasi-maximum exponential likelihood estimator(QMELE) for a non stationary generalized autoregressive conditional heteroscedastic (GARCH(1,1)) model. Asymptotic normality of this estimator is derived under a non stationary condition. A simulation study and a real example are given to evaluate the performance of QMELE for this model.  相似文献   

7.
In this paper, we establish the asymptotic properties of maximum quasi-likelihood estimator (MQLE) in quasi-likelihood non linear models (QLNMs) with stochastic regression under some mild regular conditions. We also investigate the existence, strong consistency, and asymptotic normality of MQLE in QLNMs with stochastic regression.  相似文献   

8.
    
This article studies the probabilistic structure and asymptotic inference of the first-order periodic generalized autoregressive conditional heteroscedasticity (PGARCH(1, 1)) models in which the parameters in volatility process are allowed to switch between different regimes. First, we establish necessary and sufficient conditions for a PGARCH(1, 1) process to have a unique stationary solution (in periodic sense) and for the existence of moments of any order. Second, using the representation of squared PGARCH(1, 1) model as a PARMA(1, 1) model, we then consider Yule-Walker type estimators for the parameters in PGARCH(1, 1) model and derives their consistency and asymptotic normality. The estimator can be surprisingly efficient for quite small numbers of autocorrelations and, in some cases can be more efficient than the least squares estimate (LSE). We use a residual bootstrap to define bootstrap estimators for the Yule-Walker estimates and prove the consistency of this bootstrap method. A set of numerical experiments illustrates the practical relevance of our theoretical results.  相似文献   

9.
    
Affiliation network is one kind of two-mode social network with two different sets of nodes (namely, a set of actors and a set of social events) and edges representing the affiliation of the actors with the social events. The connections in many affiliation networks are only binary weighted between actors and social events that can not reveal the affiliation strength relationship. Although a number of statistical models are proposed to analyze affiliation binary weighted networks, the asymptotic behaviors of the maximum likelihood estimator (MLE) are still unknown or have not been properly explored in affiliation weighted networks. In this paper, we study an affiliation model with the degree sequence as the exclusively natural sufficient statistic in the exponential family distributions. We derive the consistency and asymptotic normality of the maximum likelihood estimator in affiliation finite discrete weighted networks when the numbers of actors and events both go to infinity. Simulation studies and a real data example demonstrate our theoretical results.  相似文献   

10.
    
Maximum likelihood and uniform minimum variance unbiased estimators of steady-state probability distribution of system size, probability of at least ? customers in the system in steady state, and certain steady-state measures of effectiveness in the M/M/1 queue are obtained/derived based on observations on X, the number of customer arrivals during a service time. The estimators are compared using Asympotic Expected Deficiency (AED) criterion leading to recommendation of uniform minimum variance unbiased estimators over maximum likelihood estimators for some measures.  相似文献   

11.
    
This article considers the two-piece normal-Laplace (TPNL) distribution, a split skew distribution consisting of a normal part, and a Laplace part. The distribution is indexed by three parameters, representing location, scale, and shape. As illustrated with several examples, the TPNL family of distributions provides a useful alternative to other families of asymmetric distributions on the real line. However, because the likelihood function is not well behaved, standard theory of maximum-likelihood (ML) estimation does not apply to the TPNL family. In particular, the likelihood function can have multiple local maxima. We provide a procedure for computing ML estimators, and prove consistency and asymptotic normality of ML estimators, using non standard methods.  相似文献   

12.
In this article, we investigate estimating moments, up to fourth order, in linear mixed models. For this estimation, we only assume the existence of moments. The obtained estimators of the model parameters and the third and fourth moments of the errors and random effects are proved to be consistent or asymptotically normal. The estimation provides a base for further statistical inference such as confidence region construction and hypothesis testing for the parameters of interest. Moreover, the method is readily extended to estimate higher moments. A simulation is carried out to examine the performance of this estimating method.  相似文献   

13.
Robust M-estimators of intraclass correlation coefficient, location and scale parameters are defined for familial data. It is shown that these estimators are strongly consistent. Also the asymptotic distributions of these estimators are derived when the underlying distribution is elliptically and permutationally symmetric.  相似文献   

14.
    
Spatial data and non parametric methods arise frequently in studies of different areas and it is a common practice to analyze such data with semi-parametric spatial autoregressive (SPSAR) models. We propose the estimations of SPSAR models based on maximum likelihood estimation (MLE) and kernel estimation. The estimation of spatial regression coefficient ρ was done by optimizing the concentrated log-likelihood function with respect to ρ. Furthermore, under appropriate conditions, we derive the limiting distributions of our estimators for both the parametric and non parametric components in the model.  相似文献   

15.
In this paper it is shown that the bias-adjusted maximum likelihood estimator (MLE) is asymptotically equivalent to the jackknife estimator in the variance up to the order n-1 and the asymptotic deficiency of the jackknife estimator relative to the bias-adjusted MLE is equal to zero.  相似文献   

16.
In this paper, a local self-weighted quasi-maximum exponential likelihood estimator for ARFIMA-GARCH models is proposed, asymptotic normality of this estimator is derived under the existence of second moment including stationary and non-stationary cases. A simulation study is given to evaluate the performance of the proposed self-weighted QMELE under the stationary case.  相似文献   

17.
    
ABSTRACT

We consider a stochastic process, the homogeneous spatial immigration-death (HSID) process, which is a spatial birth-death process with as building blocks (i) an immigration-death (ID) process (a continuous-time Markov chain) and (ii) a probability distribution assigning iid spatial locations to all events. For the ID process, we derive the likelihood function, reduce the likelihood estimation problem to one dimension, and prove consistency and asymptotic normality for the maximum likelihood estimators (MLEs) under a discrete sampling scheme. We additionally prove consistency for the MLEs of HSID processes. In connection to the growth-interaction process, which has a HSID process as basis, we also fit HSID processes to Scots pine data.  相似文献   

18.
Abstract. We consider N independent stochastic processes (X i (t), t ∈ [0,T i ]), i=1,…, N, defined by a stochastic differential equation with drift term depending on a random variable φ i . The distribution of the random effect φ i depends on unknown parameters which are to be estimated from the continuous observation of the processes Xi. We give the expression of the exact likelihood. When the drift term depends linearly on the random effect φ i and φ i has Gaussian distribution, an explicit formula for the likelihood is obtained. We prove that the maximum likelihood estimator is consistent and asymptotically Gaussian, when T i =T for all i and N tends to infinity. We discuss the case of discrete observations. Estimators are computed on simulated data for several models and show good performances even when the length time interval of observations is not very large.  相似文献   

19.
Franz Pfuff 《Statistics》2013,47(2):195-209
In this paper, problems of sequential decision theory are taken into consideration by extending the definition of the BAYES rule and treating BAYES rules. This generalisation is quite useful for practice. In many cases only BAYES rules can be calculated. The conditions under which such sequential decision procedures exist are demonstrated, as well as how to construct them on a scheme of backward induction resulting in the conclusion that the existence of BAYES rules needs essentially weaker assumptions than the existence of BAYES rules.Futhermore, methods are searched to simplify the construction of optimal stopping rules. Some illustrative examples are given.  相似文献   

20.
We introduce the dispersion models with a regression structure to extend the generalized linear models, the exponential family nonlinear models (Cordeiro and Paula, 1989) and the proper dispersion models (Jørgensen, 1997a). We provide a matrix expression for the skewness of the maximum likelihood estimators of the regression parameters in dispersion models. The formula is suitable for computer implementation and can be applied for several important submodels discussed in the literature. Expressions for the skewness of the maximum likelihood estimators of the precision and dispersion parameters are also derived. In particular, our results extend previous formulas obtained by Cordeiro and Cordeiro (2001) and Cavalcanti et al. (2009). A simulation study is performed to show the practice importance of our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号