首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Nowadays, generalized linear models have many applications. Some of these models which have more applications in the real world are the models with random effects; that is, some of the unknown parameters are considered random variables. In this article, this situation is considered in logistic regression models with a random intercept having exponential distribution. The aim is to obtain the Bayesian D-optimal design; thus, the method is to maximize the Bayesian D-optimal criterion. For the model was considered here, this criterion is a function of the quasi-information matrix that depends on the unknown parameters of the model. In the Bayesian D-optimal criterion, the expectation is acquired in respect of the prior distributions that are considered for the unknown parameters. Thus, it will only be a function of experimental settings (support points) and their weights. The prior distribution of the fixed parameters is considered uniform and normal. The Bayesian D-optimal design is finally calculated numerically by R3.1.1 software.  相似文献   

2.
The existing studies on spatial dynamic panel data model (SDPDM) mainly focus on the normality assumption of response variables and random effects. This assumption may be inappropriate in some applications. This paper proposes a new SDPDM by assuming that response variables and random effects follow the multivariate skew-normal distribution. A Markov chain Monte Carlo algorithm is developed to evaluate Bayesian estimates of unknown parameters and random effects in skew-normal SDPDM by combining the Gibbs sampler and the Metropolis–Hastings algorithm. A Bayesian local influence analysis method is developed to simultaneously assess the effect of minor perturbations to the data, priors and sampling distributions. Simulation studies are conducted to investigate the finite-sample performance of the proposed methodologies. An example is illustrated by the proposed methodologies.  相似文献   

3.
This article proposes a stochastic version of the matching pursuit algorithm for Bayesian variable selection in linear regression. In the Bayesian formulation, the prior distribution of each regression coefficient is assumed to be a mixture of a point mass at 0 and a normal distribution with zero mean and a large variance. The proposed stochastic matching pursuit algorithm is designed for sampling from the posterior distribution of the coefficients for the purpose of variable selection. The proposed algorithm can be considered a modification of the componentwise Gibbs sampler. In the componentwise Gibbs sampler, the variables are visited by a random or a systematic scan. In the stochastic matching pursuit algorithm, the variables that better align with the current residual vector are given higher probabilities of being visited. The proposed algorithm combines the efficiency of the matching pursuit algorithm and the Bayesian formulation with well defined prior distributions on coefficients. Several simulated examples of small n and large p are used to illustrate the algorithm. These examples show that the algorithm is efficient for screening and selecting variables.  相似文献   

4.
For dependent Bernoulli random variables, the distribution of a sum of the random variables is obtained as a generalized binomial distribution determined by a two-state Markov chain. Asymptotic distributions of the sum are derived from the central limit theorem and the Edgeworth expansion. A numerical comparison of the exact and asymptotic distributions of the sum is also given. Further a distribution of the sum by the Bayesian approach is derived and its asymptotic distributions are provided. Numerical results are given.  相似文献   

5.
We propose a flexible model approach for the distribution of random effects when both response variables and covariates have non-ignorable missing values in a longitudinal study. A Bayesian approach is developed with a choice of nonparametric prior for the distribution of random effects. We apply the proposed method to a real data example from a national long-term survey by Statistics Canada. We also design simulation studies to further check the performance of the proposed approach. The result of simulation studies indicates that the proposed approach outperforms the conventional approach with normality assumption when the heterogeneity in random effects distribution is salient.  相似文献   

6.
In this article, we present a Bayesian modeling for response variables restricted to the interval (0, 1), such as proportions and rates, using the simplex distribution for cases in which data have a longitudinal form, taking random effects into account. In order to investigate the stability of posterior distribution, we study through sensitivity analysis, the effect of three different uniparametric prior distributions for variance parameters of random effect on the final estimation. For this purpose, we consider homogeneous and heterogeneous structures for parameters in location and dispersion submodels. Models and results are illustrated with simulated and real data application.  相似文献   

7.
In this article, we apply the Bayesian approach to the linear mixed effect models with autoregressive(p) random errors under mixture priors obtained with the Markov chain Monte Carlo (MCMC) method. The mixture structure of a point mass and continuous distribution can help to select the variables in fixed and random effects models from the posterior sample generated using the MCMC method. Bayesian prediction of future observations is also one of the major concerns. To get the best model, we consider the commonly used highest posterior probability model and the median posterior probability model. As a result, both criteria tend to be needed to choose the best model from the entire simulation study. In terms of predictive accuracy, a real example confirms that the proposed method provides accurate results.  相似文献   

8.
Abstract

Augmented mixed beta regression models are suitable choices for modeling continuous response variables on the closed interval [0, 1]. The random eeceeects in these models are typically assumed to be normally distributed, but this assumption is frequently violated in some applied studies. In this paper, an augmented mixed beta regression model with skew-normal independent distribution for random effects are used. Next, we adopt a Bayesian approach for parameter estimation using the MCMC algorithm. The methods are then evaluated using some intensive simulation studies. Finally, the proposed models have applied to analyze a dataset from an Iranian Labor Force Survey.  相似文献   

9.
In this paper we review some results that have been derived on record values for some well known probability density functions and based on m records from Kumaraswamy’s distribution we obtain estimators for the two parameters and the future sth record value. These estimates are derived using the maximum likelihood and Bayesian approaches. In the Bayesian approach, the two parameters are assumed to be random variables and estimators for the parameters and for the future sth record value are obtained, when we have observed m past record values, using the well known squared error loss (SEL) function and a linear exponential (LINEX) loss function. The findings are illustrated with actual and computer generated data.  相似文献   

10.
This paper proposes Bayesian nonparametric mixing for some well-known and popular models. The distribution of the observations is assumed to contain an unknown mixed effects term which includes a fixed effects term, a function of the observed covariates, and an additive or multiplicative random effects term. Typically these random effects are assumed to be independent of the observed covariates and independent and identically distributed from a distribution from some known parametric family. This assumption may be suspect if either there is interaction between observed covariates and unobserved covariates or the fixed effects predictor of observed covariates is misspecified. Another cause for concern might be simply that the covariates affect more than just the location of the mixed effects distribution. As a consequence the distribution of the random effects could be highly irregular in modality and skewness leaving parametric families unable to model the distribution adequately. This paper therefore proposes a Bayesian nonparametric prior for the random effects to capture possible deviances in modality and skewness and to explore the observed covariates' effect on the distribution of the mixed effects.  相似文献   

11.
Consider a J-component series system which is put on Accelerated Life Test (ALT) involving K stress variables. First, a general formulation of ALT is provided for log-location-scale family of distributions. A general stress translation function of location parameter of the component log-lifetime distribution is proposed which can accommodate standard ones like Arrhenius, power-rule, log-linear model, etc., as special cases. Later, the component lives are assumed to be independent Weibull random variables with a common shape parameter. A full Bayesian methodology is then developed by letting only the scale parameters of the Weibull component lives depend on the stress variables through the general stress translation function. Priors on all the parameters, namely the stress coefficients and the Weibull shape parameter, are assumed to be log-concave and independent of each other. This assumption is to facilitate Gibbs sampling from the joint posterior. The samples thus generated from the joint posterior is then used to obtain the Bayesian point and interval estimates of the system reliability at usage condition.  相似文献   

12.
Copulas are full measures of dependence among random variables. They are increasingly popular among academics and practitioners in financial econometrics for modeling comovements between markets, risk factors, and other relevant variables. A copula's hidden dependence structure that couples a joint distribution with its marginals makes a parametric copula non-trivial. An approach to bivariate copula density estimation is introduced that is based on a penalized likelihood with a total variation penalty term. Adaptive choice of the amount of regularization is based on approximate Bayesian Information Criterion (BIC) type scores. Performance are evaluated through the Monte Carlo simulation.  相似文献   

13.
The subject of this paper is Bayesian inference about the fixed and random effects of a mixed-effects linear statistical model with two variance components. It is assumed that a priori the fixed effects have a noninformative distribution and that the reciprocals of the variance components are distributed independently (of each other and of the fixed effects) as gamma random variables. It is shown that techniques similar to those employed in a ridge analysis of a response surface can be used to construct a one-dimensional curve that contains all of the stationary points of the posterior density of the random effects. The “ridge analysis” (of the posterior density) can be useful (from a computational standpoint) in finding the number and the locations of the stationary points and can be very informative about various features of the posterior density. Depending on what is revealed by the ridge analysis, a multivariate normal or multivariate-t distribution that is centered at a posterior mode may provide a satisfactory approximation to the posterior distribution of the random effects (which is of the poly-t form).  相似文献   

14.
Sequences of independent random variables are observed and on the basis of these observations future values of the process are forecast. The Bayesian predictive density of k future observations for normal, exponential, and binomial sequences which change exactly once are analyzed for several cases. It is seen that the Bayesian predictive densities are mixtures of standard probability distributions. For example, with normal sequences the Bayesian predictive density is a mixture of either normal or t-distributions, depending on whether or not the common variance is known. The mixing probabilities are the same as those occurring in the corresponding posterior distribution of the mean(s) of the sequence. The predictive mass function of the number of future successes that will occur in a changing Bernoulli sequence is computed and point and interval predictors are illustrated.  相似文献   

15.
The purpose of this paper is to build a model for aggregate losses which constitutes a crucial step in evaluating premiums for health insurance systems. It aims at obtaining the predictive distribution of the aggregate loss within each age class of insured persons over the time horizon involved in planning employing the Bayesian methodology. The model proposed using the Bayesian approach is a generalization of the collective risk model, a commonly used model for analysing risk of an insurance system. Aggregate loss prediction is based on past information on size of loss, number of losses and size of population at risk. In modelling the frequency and severity of losses, the number of losses is assumed to follow a negative binomial distribution, individual loss sizes are independent and identically distributed exponential random variables, while the number of insured persons in a finite number of possible age groups is assumed to follow the multinomial distribution. Prediction of aggregate losses is based on the Gibbs sampling algorithm which incorporates the missing data approach.  相似文献   

16.
ABSTRACT

A general Bayesian random effects model for analyzing longitudinal mixed correlated continuous and negative binomial responses with and without missing data is presented. This Bayesian model, given some random effects, uses a normal distribution for the continuous response and a negative binomial distribution for the count response. A Markov Chain Monte Carlo sampling algorithm is described for estimating the posterior distribution of the parameters. This Bayesian model is illustrated by a simulation study. For sensitivity analysis to investigate the change of parameter estimates with respect to the perturbation from missing at random to not missing at random assumption, the use of posterior curvature is proposed. The model is applied to a medical data, obtained from an observational study on women, where the correlated responses are the negative binomial response of joint damage and continuous response of body mass index. The simultaneous effects of some covariates on both responses are also investigated.  相似文献   

17.
In this paper, order statistics from independent and non identically distributed random variables is used to obtain ordered ranked set sampling (ORSS). Bayesian inference of unknown parameters under a squared error loss function of the Pareto distribution is determined. We compute the minimum posterior expected loss (the posterior risk) of the derived estimates and compare them with those based on the corresponding simple random sample (SRS) to assess the efficiency of the obtained estimates. Two-sample Bayesian prediction for future observations is introduced by using SRS and ORSS for one- and m-cycle. A simulation study and real data are applied to show the proposed results.  相似文献   

18.
We consider exact and approximate Bayesian computation in the presence of latent variables or missing data. Specifically we explore the application of a posterior predictive distribution formula derived in Sweeting And Kharroubi (2003), which is a particular form of Laplace approximation, both as an importance function and a proposal distribution. We show that this formula provides a stable importance function for use within poor man’s data augmentation schemes and that it can also be used as a proposal distribution within a Metropolis-Hastings algorithm for models that are not analytically tractable. We illustrate both uses in the case of a censored regression model and a normal hierarchical model, with both normal and Student t distributed random effects. Although the predictive distribution formula is motivated by regular asymptotic theory, it is not necessary that the likelihood has a closed form or that it possesses a local maximum.  相似文献   

19.
动态随机一般均衡模型中涵盖无法直接观测的变量,同时跨方程约束涉及复杂的非线性关系使方程的解析估计难以实现。在贝叶斯框架下识别动态随机一般均衡模型,基于状态空间方法建立度量方程和状态转移方程,采用辅助粒子滤波预测条件后验分布,建立贝叶斯误差带描述宏观经济变量脉冲响应函数的动态特征。实际数据分析验证了贝叶斯识别方法的有效性。  相似文献   

20.
Statistical meta‐analysis is mostly carried out with the help of the random effect normal model, including the case of discrete random variables. We argue that the normal approximation is not always able to adequately capture the underlying uncertainty of the original discrete data. Furthermore, when we examine the influence of the prior distributions considered, in the presence of rare events, the results from this approximation can be very poor. In order to assess the robustness of the quantities of interest in meta‐analysis with respect to the choice of priors, this paper proposes an alternative Bayesian model for binomial random variables with several zero responses. Particular attention is paid to the coherence between the prior distributions of the study model parameters and the meta‐parameter. Thus, our method introduces a simple way to examine the sensitivity of these quantities to the structure dependence selected for study. For illustrative purposes, an example with real data is analysed, using the proposed Bayesian meta‐analysis model for binomial sparse data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号