共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider Dirichlet process mixture models in which the observed clusters in any particular dataset are not viewed as belonging to a finite set of possible clusters but rather as representatives of a latent structure in which objects belong to one of a potentially infinite number of clusters. As more information is revealed the number of inferred clusters is allowed to grow. The precision parameter of the Dirichlet process is a crucial parameter that controls the number of clusters. We develop a framework for the specification of the hyperparameters associated with the prior for the precision parameter that can be used both in the presence or absence of subjective prior information about the level of clustering. Our approach is illustrated in an analysis of clustering brands at the magazine Which?. The results are compared with the approach of Dorazio (2009) via a simulation study. 相似文献
2.
Liliana Garrido 《统计学通讯:理论与方法》2014,43(2):249-265
In this article, we propose Bayesian methodology to obtain parameter estimates of the mixture of distributions belonging to the normal and biparametric Weibull families, modeling the mean and the variance parameters. Simulated studies and applications show the performance of the proposed models. 相似文献
3.
M. C. Ausín B. González-Pérez M. T. Rodríguez-Bernal I. Salazar L. Sanz 《统计学通讯:理论与方法》2013,42(13):2276-2291
Recently, the field of multiple hypothesis testing has experienced a great expansion, basically because of the new methods developed in the field of genomics. These new methods allow scientists to simultaneously process thousands of hypothesis tests. The frequentist approach to this problem is made by using different testing error measures that allow to control the Type I error rate at a certain desired level. Alternatively, in this article, a Bayesian hierarchical model based on mixture distributions and an empirical Bayes approach are proposed in order to produce a list of rejected hypotheses that will be declared significant and interesting for a more detailed posterior analysis. In particular, we develop a straightforward implementation of a Gibbs sampling scheme where all the conditional posterior distributions are explicit. The results are compared with the frequentist False Discovery Rate (FDR) methodology. Simulation examples show that our model improves the FDR procedure in the sense that it diminishes the percentage of false negatives keeping an acceptable percentage of false positives. 相似文献
4.
Loukia Meligkotsidou 《Statistics and Computing》2007,17(2):93-107
In this paper we present Bayesian analysis of finite mixtures of multivariate Poisson distributions with an unknown number
of components. The multivariate Poisson distribution can be regarded as the discrete counterpart of the multivariate normal
distribution, which is suitable for modelling multivariate count data. Mixtures of multivariate Poisson distributions allow
for overdispersion and for negative correlations between variables. To perform Bayesian analysis of these models we adopt
a reversible jump Markov chain Monte Carlo (MCMC) algorithm with birth and death moves for updating the number of components.
We present results obtained from applying our modelling approach to simulated and real data. Furthermore, we apply our approach
to a problem in multivariate disease mapping, namely joint modelling of diseases with correlated counts. 相似文献
5.
Mohammad Saber Fallah Nezhad 《统计学通讯:理论与方法》2013,42(4):702-725
If at least one out of two serial machines that produce a specific product in manufacturing environments malfunctions, there will be non conforming items produced. Determining the optimal time of the machines' maintenance is the one of major concerns. While a convenient common practice for this kind of problem is to fit a single probability distribution to the combined defect data, it does not adequately capture the fact that there are two different underlying causes of failures. A better approach is to view the defects as arising from a mixture population: one due to the first machine failures and the other due to the second one. In this article, a mixture model along with both Bayesian inference and stochastic dynamic programming approaches are used to find the multi-stage optimal replacement strategy. Using the posterior probability of the machines to be in state λ1, λ2 (the failure rates of defective items produced by machine 1 and 2, respectively), we first formulate the problem as a stochastic dynamic programming model. Then, we derive some properties for the optimal value of the objective function and propose a solution algorithm. At the end, the application of the proposed methodology is demonstrated by a numerical example and an error analysis is performed to evaluate the performances of the proposed procedure. The results of this analysis show that the proposed method performs satisfactorily when a different number of observations on the times between productions of defective products is available. 相似文献
6.
Liliana Garrido L 《统计学通讯:模拟与计算》2013,42(3):355-375
In this article we propose mixture of distributions belonging to the biparametric exponential family, considering joint modeling of the mean and variance (or dispersion) parameters. As special cases we consider mixtures of normal and gamma distributions. A novel Bayesian methodology, using Markov Chain Monte Carlo (MCMC) methods, is proposed to obtain the posterior summaries of interest. We include simulations and real data examples to illustrate de performance of the proposal. 相似文献
7.
A Bayesian mixture model for differential gene expression 总被引:3,自引:0,他引:3
Kim-Anh Do Peter Müller Feng Tang 《Journal of the Royal Statistical Society. Series C, Applied statistics》2005,54(3):627-644
Summary. We propose model-based inference for differential gene expression, using a nonparametric Bayesian probability model for the distribution of gene intensities under various conditions. The probability model is a mixture of normal distributions. The resulting inference is similar to a popular empirical Bayes approach that is used for the same inference problem. The use of fully model-based inference mitigates some of the necessary limitations of the empirical Bayes method. We argue that inference is no more difficult than posterior simulation in traditional nonparametric mixture-of-normal models. The approach proposed is motivated by a microarray experiment that was carried out to identify genes that are differentially expressed between normal tissue and colon cancer tissue samples. Additionally, we carried out a small simulation study to verify the methods proposed. In the motivating case-studies we show how the nonparametric Bayes approach facilitates the evaluation of posterior expected false discovery rates. We also show how inference can proceed even in the absence of a null sample of known non-differentially expressed scores. This highlights the difference from alternative empirical Bayes approaches that are based on plug-in estimates. 相似文献
8.
Weixin Yao 《统计学通讯:模拟与计算》2013,42(4):800-813
The label-switching problem is one of the fundamental problems in Bayesian mixture analysis. Using all the Markov chain Monte Carlo samples as the initials for the expectation-maximization (EM) algorithm, we propose to label the samples based on the modes they converge to. Our method is based on the assumption that the samples converged to the same mode have the same labels. If a relative noninformative prior is used or the sample size is large, the posterior will be close to the likelihood and then the posterior modes can be located approximately by the EM algorithm for mixture likelihood, without assuming the availability of the closed form of the posterior. In order to speed up the computation of this labeling method, we also propose to first cluster the samples by K-means with a large number of clusters K. Then, by assuming that the samples within each cluster have the same labels, we only need to find one converged mode for each cluster. Using a Monte Carlo simulation study and a real dataset, we demonstrate the success of our new method in dealing with the label-switching problem. 相似文献
9.
ABSTRACTIn this article, we propose a new distribution by mixing normal and Pareto distributions, and the new distribution provides an unusual hazard function. We model the mean and the variance with covariates for heterogeneity. Estimation of the parameters is obtained by the Bayesian method using Markov Chain Monte Carlo (MCMC) algorithms. Proposal distribution in MCMC is proposed with a defined working variable related to the observations. Through the simulation, the method shows a dependable performance of the model. We demonstrate through establishing model under a real dataset that the proposed model and method can be more suitable than the previous report. 相似文献
10.
In this study, we propose a prior on restricted Vector Autoregressive (VAR) models. The prior setting permits efficient Markov Chain Monte Carlo (MCMC) sampling from the posterior of the VAR parameters and estimation of the Bayes factor. Numerical simulations show that when the sample size is small, the Bayes factor is more effective in selecting the correct model than the commonly used Schwarz criterion. We conduct Bayesian hypothesis testing of VAR models on the macroeconomic, state-, and sector-specific effects of employment growth. 相似文献
11.
A sequence of independent lifetimes X 1,…, X m , X m+1,…, X n were observed from inverse Weibull distribution with mean stress θ1 and reliability R 1(t 0) at time t 0 but later it was found that there was a change in the system at some point of time m and it is reflected in the sequence after X m by change in mean stress θ1 and in reliability R 2(t 0) at time t 0. The Bayes estimators of m, R 1(t 0) and R 2(t 0) are derived when a poor and a more detailed prior information is introduced into the inferential procedure. The effects of correct and wrong prior information on the Bayes estimators are studied. 相似文献
12.
In recent years, numerous statisticians have focused their attention on the Bayesian analysis of different paired comparison models. While studying paired comparison techniques, the Davidson model is considered to be one of the famous paired comparison models in the available literature. In this article, we have introduced an amendment in the Davidson model which has been commenced to accommodate the option of not distinguishing the effects of two treatments when they are compared pairwise. Having made this amendment, the Bayesian analysis of the Amended Davidson model is performed using the noninformative (uniform and Jeffreys’) and informative (Dirichlet–gamma–gamma) priors. To study the model and to perform the Bayesian analysis with the help of an example, we have obtained the joint and marginal posterior distributions of the parameters, their posterior estimates, graphical presentations of the marginal densities, preference and predictive probabilities and the posterior probabilities to compare the treatment parameters. 相似文献
13.
In hierarchical mixture models the Dirichlet process is used to specify latent patterns of heterogeneity, particularly when the distribution of latent parameters is thought to be clustered (multimodal). The parameters of a Dirichlet process include a precision parameter α and a base probability measure G0. In problems where α is unknown and must be estimated, inferences about the level of clustering can be sensitive to the choice of prior assumed for α. In this paper an approach is developed for computing a prior for the precision parameter α that can be used in the presence or absence of prior information about the level of clustering. This approach is illustrated in an analysis of counts of stream fishes. The results of this fully Bayesian analysis are compared with an empirical Bayes analysis of the same data and with a Bayesian analysis based on an alternative commonly used prior. 相似文献
14.
We introduce classical approaches for testing hypotheses on the meiosis I non disjunction fraction in trisomies, such as the likelihood-ratio, bootstrap, and Monte Carlo procedures. To calculate the p-values for the bootstrap and Monte Carlo procedures, different transformations in the data are considered. Bootstrap confidence intervals are also used as a tool to perform hypotheses tests. A Monte Carlo study is carried out to compare the proposed test procedures with two Bayesian ones: Jeffreys and Pereira-Stern tests. The results show that the likelihood-ratio and the Bayesian tests present the best performance. Down syndrome data are analyzed to illustrate the procedures. 相似文献
15.
Silvia Figini 《统计学通讯:理论与方法》2017,46(19):9507-9517
Many credit risk models are based on the selection of a single logistic regression model, on which to base parameter estimation. When many competing models are available, and without enough guidance from economical theory, model averaging represents an appealing alternative to the selection of single models. Despite model averaging approaches have been present in statistics for many years, only recently they are starting to receive attention in economics and finance applications. This contribution shows how Bayesian model averaging can be applied to credit risk estimation, a research area that has received a great deal of attention recently, especially in the light of the global financial crisis of the last few years and the correlated attempts to regulate international finance. The paper considers the use of logistic regression models under the Bayesian Model Averaging paradigm. We argue that Bayesian model averaging is not only more correct from a theoretical viewpoint, but also slightly superior, in terms of predictive performance, with respect to single selected models. 相似文献
16.
M. Maleki 《统计学通讯:理论与方法》2017,46(15):7546-7561
The estimation problem of epsilon-skew-normal (ESN) distribution parameters is considered within Bayesian approaches. This family of distributions contains the normal distribution, can be used for analyzing the asymmetric and near-normal data. Bayesian estimates under informative and non informative Jeffreys prior distributions are obtained and performances of ESN family and these estimates are shown via a simulation study. A real data set is also used to illustrate the ideas. 相似文献
17.
In this article, a subjective Bayesian approach is followed to derive estimators for the parameters of the normal model by assuming a gamma-mixture class of prior distributions, which includes the gamma and the noncentral gamma as special cases. An innovative approach is proposed to find the analytical expression of the posterior density function when a complicated prior structure is ensued. The simulation studies and a real dataset illustrate the modeling advantages of this proposed prior and support some of the findings. 相似文献
18.
Statistical models are sometimes incorporated into computer software for making predictions about future observations. When
the computer model consists of a single statistical model this corresponds to estimation of a function of the model parameters.
This paper is concerned with the case that the computer model implements multiple, individually-estimated statistical sub-models.
This case frequently arises, for example, in models for medical decision making that derive parameter information from multiple
clinical studies. We develop a method for calculating the posterior mean of a function of the parameter vectors of multiple
statistical models that is easy to implement in computer software, has high asymptotic accuracy, and has a computational cost
linear in the total number of model parameters. The formula is then used to derive a general result about posterior estimation
across multiple models. The utility of the results is illustrated by application to clinical software that estimates the risk
of fatal coronary disease in people with diabetes. 相似文献
19.
On sequential Monte Carlo sampling methods for Bayesian filtering 总被引:145,自引:0,他引:145
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework is developed that unifies many of the methods which have been proposed over the last few decades in several different scientific disciplines. Novel extensions to the existing methods are also proposed. We show in particular how to incorporate local linearisation methods similar to those which have previously been employed in the deterministic filtering literature; these lead to very effective importance distributions. Furthermore we describe a method which uses Rao-Blackwellisation in order to take advantage of the analytic structure present in some important classes of state-space models. In a final section we develop algorithms for prediction, smoothing and evaluation of the likelihood in dynamic models. 相似文献
20.
In this paper we obtain the Bayes forecasts for the future observations on the dependent variable in the linear regression model when the regression coefficients have an Edgeworth series prior distribution. Furthermore, we consider the effect of departure from normality of the prior distribution of regression coefficients on the Bayes forecasts. 相似文献