首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The operating characteristics (OCs) of a subset ranking and selection procedure are derived for the hybrid randomized response model developed by Jia and McDonald (2009 Jia, F., McDonald, G. (2009). Analyzing hybrid randomized response data with a binomial selection procedure. Commun. Statist. Theor. Meth. 38:784807.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]). The OCs include the probability of a correct P(CS), the individual selection probability γi, and the expected subset size E(S), under the slippage configuration or the equi-spaced configuration. An example comparing failure rates of contraceptive methods is used to illustrate the use of these new results.  相似文献   

2.
A review of the randomized response model introduced by Warner (1965) is given, then a randomized response model applicable to continuous data that considers a mixture of two normal distributions is considered. The target here is not to estimate any parameter, but rather to select the population with the best parameter value. This article provides a study on how to choose the best population between k distinct populations using an indifference-zone procedure. Also, this article includes tables for the required sample size needed in order to have a probability of correct selection higher than some specified value in the preference zone for the randomized response model considered.  相似文献   

3.
ABSTRACT

The display of the data by means of contingency tables is used in different approaches to statistical inference, for example, to broach the test of homogeneity of independent multinomial distributions. We develop a Bayesian procedure to test simple null hypotheses versus bilateral alternatives in contingency tables. Given independent samples of two binomial distributions and taking a mixed prior distribution, we calculate the posterior probability that the proportion of successes in the first population is the same as in the second. This posterior probability is compared with the p-value of the classical method, obtaining a reconciliation between both results, classical and Bayesian. The obtained results are generalized for r × s tables.  相似文献   

4.
《Econometric Reviews》2013,32(2):175-194
ABSTRACT

Under a sample selection or non-response problem, where a response variable y is observed only when a condition δ = 1 is met, the identified mean E(y|δ = 1) is not equal to the desired mean E(y). But the monotonicity condition E(y|δ = 1) ≤ E(y|δ = 0) yields an informative bound E(y|δ = 1) ≤ E(y), which is enough for certain inferences. For example, in a majority voting with δ being the vote-turnout, it is enough to know if E(y) > 0.5 or not, for which E(y|δ = 1) > 0.5 is sufficient under the monotonicity. The main question is then whether the monotonicity condition is testable, and if not, when it is plausible. Answering to these queries, when there is a ‘proxy’ variable z related to y but fully observed, we provide a test for the monotonicity; when z is not available, we provide primitive conditions and plausible models for the monotonicity. Going further, when both y and z are binary, bivariate monotonicities of the type P(y, z|δ = 1) ≤ P(y, z|δ = 0) are considered, which can lead to sharper bounds for P(y). As an empirical example, a data set on the 1996 U.S. presidential election is analyzed to see if the Republican candidate could have won had everybody voted, i.e., to see if P(y) > 0.5, where y = 1 is voting for the Republican candidate.  相似文献   

5.
Data sets with excess zeroes are frequently analyzed in many disciplines. A common framework used to analyze such data is the zero-inflated (ZI) regression model. It mixes a degenerate distribution with point mass at zero with a non-degenerate distribution. The estimates from ZI models quantify the effects of covariates on the means of latent random variables, which are often not the quantities of primary interest. Recently, marginal zero-inflated Poisson (MZIP; Long et al. [A marginalized zero-inflated Poisson regression model with overall exposure effects. Stat. Med. 33 (2014), pp. 5151–5165]) and negative binomial (MZINB; Preisser et al., 2016) models have been introduced that model the mean response directly. These models yield covariate effects that have simple interpretations that are, for many applications, more appealing than those available from ZI regression. This paper outlines a general framework for marginal zero-inflated models where the latent distribution is a member of the exponential dispersion family, focusing on common distributions for count data. In particular, our discussion includes the marginal zero-inflated binomial (MZIB) model, which has not been discussed previously. The details of maximum likelihood estimation via the EM algorithm are presented and the properties of the estimators as well as Wald and likelihood ratio-based inference are examined via simulation. Two examples presented illustrate the advantages of MZIP, MZINB, and MZIB models for practical data analysis.  相似文献   

6.
The Hinde–Demétrio (HD) family of distributions, which are discrete exponential dispersion models with an additional real index parameter p, have been recently characterized from the unit variance function μ + μ p . For p equals to 2, 3,…, the corresponding distributions are concentrated on non negative integers, overdispersed and zero-inflated with respect to a Poisson distribution having the same mean. The negative binomial (p = 2) and strict arcsine (p = 3) distributions are HD families; the limit case (p → ∞) is associated to a suitable Poisson distribution. Apart from these count distributions, none of the HD distributions has explicit probability mass functions p k . This article shows that the ratios r k  = k p k /p k?1, k = 1,…, p ? 1, are equal and different from r p . This new property allows, for a given count data set, to determine the integer p by some tests. The extreme situation of p = 2 is of general interest for count data. Some examples are used for illustrations and discussions.  相似文献   

7.
This paper considers a linear regression model with regression parameter vector β. The parameter of interest is θ= aTβ where a is specified. When, as a first step, a data‐based variable selection (e.g. minimum Akaike information criterion) is used to select a model, it is common statistical practice to then carry out inference about θ, using the same data, based on the (false) assumption that the selected model had been provided a priori. The paper considers a confidence interval for θ with nominal coverage 1 ‐ α constructed on this (false) assumption, and calls this the naive 1 ‐ α confidence interval. The minimum coverage probability of this confidence interval can be calculated for simple variable selection procedures involving only a single variable. However, the kinds of variable selection procedures used in practice are typically much more complicated. For the real‐life data presented in this paper, there are 20 variables each of which is to be either included or not, leading to 220 different models. The coverage probability at any given value of the parameters provides an upper bound on the minimum coverage probability of the naive confidence interval. This paper derives a new Monte Carlo simulation estimator of the coverage probability, which uses conditioning for variance reduction. For these real‐life data, the gain in efficiency of this Monte Carlo simulation due to conditioning ranged from 2 to 6. The paper also presents a simple one‐dimensional search strategy for parameter values at which the coverage probability is relatively small. For these real‐life data, this search leads to parameter values for which the coverage probability of the naive 0.95 confidence interval is 0.79 for variable selection using the Akaike information criterion and 0.70 for variable selection using Bayes information criterion, showing that these confidence intervals are completely inadequate.  相似文献   

8.
ABSTRACT

Consider k(≥ 2) independent exponential populations Π1, Π2, …, Π k , having the common unknown location parameter μ ∈ (?∞, ∞) (also called the guarantee time) and unknown scale parameters σ1, σ2, …σ k , respectively (also called the remaining mean lifetimes after the completion of guarantee times), σ i  > 0, i = 1, 2, …, k. Assume that the correct ordering between σ1, σ2, …, σ k is not known apriori and let σ[i], i = 1, 2, …, k, denote the ith smallest of σ j s, so that σ[1] ≤ σ[2] ··· ≤ σ[k]. Then Θ i  = μ + σ i is the mean lifetime of Π i , i = 1, 2, …, k. Let Θ[1] ≤ Θ[2] ··· ≤ Θ[k] denote the ranked values of the Θ j s, so that Θ[i] = μ + σ[i], i = 1, 2, …, k, and let Π(i) denote the unknown population associated with the ith smallest mean lifetime Θ[i] = μ + σ[i], i = 1, 2, …, k. Based on independent random samples from the k populations, we propose a selection procedure for the goal of selecting the population having the longest mean lifetime Θ[k] (called the “best” population), under the subset selection formulation. Tables for the implementation of the proposed selection procedure are provided. It is established that the proposed subset selection procedure is monotone for a general k (≥ 2). For k = 2, we consider the loss measured by the size of the selected subset and establish that the proposed subset selection procedure is minimax among selection procedures that satisfy a certain probability requirement (called the P*-condition) for the inclusion of the best population in the selected subset.  相似文献   

9.
The Fisher exact test has been unjustly dismissed by some as ‘only conditional,’ whereas it is unconditionally the uniform most powerful test among all unbiased tests, tests of size α and with power greater than its nominal level of significance α. The problem with this truly optimal test is that it requires randomization at the critical value(s) to be of size α. Obviously, in practice, one does not want to conclude that ‘with probability x the we have a statistical significant result.’ Usually, the hypothesis is rejected only if the test statistic's outcome is more extreme than the critical value, reducing the actual size considerably.

The randomized unconditional Fisher exact is constructed (using Neyman–structure arguments) by deriving a conditional randomized test randomizing at critical values c(t) by probabilities γ(t), that both depend on the total number of successes T (the complete-sufficient statistic for the nuisance parameter—the common success probability) conditioned upon.

In this paper, the Fisher exact is approximated by deriving nonrandomized conditional tests with critical region including the critical value only if γ (t) > γ0, for a fixed threshold value γ0, such that the size of the unconditional modified test is for all value of the nuisance parameter—the common success probability—smaller, but as close as possible to α. It will be seen that this greatly improves the size of the test as compared with the conservative nonrandomized Fisher exact test.

Size, power, and p value comparison with the (virtual) randomized Fisher exact test, and the conservative nonrandomized Fisher exact, Pearson's chi-square test, with the more competitive mid-p value, the McDonald's modification, and Boschloo's modifications are performed under the assumption of two binomial samples.  相似文献   

10.
In this paper, Abdelfatah and Mazloum's (2015) two-stage randomized response model is extended to unequal probability sampling and stratified unequal probability sampling, both with and without replacement. The extended models result in more efficient estimators than Lee et al.'s (2014) estimators of the proportion of the population having a sensitive attribute.  相似文献   

11.
Standard methods for analyzing binomial regression data rely on asymptotic inferences. Bayesian methods can be performed using simple computations, and they apply for any sample size. We provide a relatively complete discussion of Bayesian inferences for binomial regression with emphasis on inferences for the probability of “success.” Furthermore, we illustrate diagnostic tools, perform model selection among nonnested models, and examine the sensitivity of the Bayesian methods.  相似文献   

12.
A sampling design called “Modified Systematic Sampling (MSS)” is proposed. In this design each unit has an equal probability of selection. Moreover, it works for both situations: N = nk or N ≠ nk. Consequently, the Linear Systematic Sampling (LSS) and Circular Systematic Sampling (CSS) become special cases of the proposed MSS design.  相似文献   

13.
Consider a sequence of independent and identically distributed random variables with an absolutely continuous distribution function. The probability functions of the numbers Kn,r and Nn,r of r-records up to time n of the first and second type, respectively, are obtained in terms of the non central and central signless Stirling numbers of the first kind. Also, the binomial moments of Kn,r and Nn,r are expressed in terms of the non central signless Stirling numbers of the first kind. The probability functions of the times Lk,r and Tk,r of the kth r-record of the first and second type, respectively, are deduced from those of Kn,r and Nn,r. A simple expression for the binomial moments of Tk,r is derived. Finally, the probability functions and binomial moments of the kth inter-r-record times Uk,r = Lk,r ? Lk?1,r and Wk,r = Tk,r ? Tk?1,r are obtained as sums of finite number of terms.  相似文献   

14.
This paper proposes an efficient stratified randomized response model based on Chang et al.'s (2004) model. We have obtained the variance of the proposed estimator of πs, the proportion of the respondents in the population belonging to a sensitive group, under proportional and Neyman allocations. It is shown that the estimator based on the proposed model is more efficient than the Chang et al.'s (2004) estimator under both proportional as well as Neyman allocations, Hong et al.'s (1994) estimator and Kim and Warde's (2004) estimator. Numerical illustration and pictorial representation are given in support of the present study.  相似文献   

15.
For surveys with sensitive questions, randomized response sampling strategies are often used to increase the response rate and encourage participants to provide the truth of the question while participants' privacy and confidentiality are protected. The proportion of responding ‘yes’ to the sensitive question is the parameter of interest. Asymptotic confidence intervals for this proportion are calculated from the limiting distribution of the test statistic, and are traditionally used in practice for statistical inference. It is well known that these intervals do not guarantee the coverage probability. For this reason, we apply the exact approach, adjusting the critical value as in [10 J. Frey and A. Pérez, Exact binomial confidence intervals for randomized response, Amer. Statist.66 (2012), pp. 815. Available at http://dx.doi.org/10.1080/00031305.2012.663680.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]], to construct the exact confidence interval of the proportion based on the likelihood ratio test and three Wilson-type tests. Two randomized response sampling strategies are studied: the Warner model and the unrelated model. The exact interval based on the likelihood ratio test has shorter average length than others when the probability of the sensitive question is low. Exact Wilson intervals have good performance in other cases. A real example from a survey study is utilized to illustrate the application of these exact intervals.  相似文献   

16.
Unlike the usual randomized response techniques, as a pioneering attempt, this article focuses on using non identical independent Bernoulli trials in sensitive surveys. For this purpose, a general class of randomized response techniques is considered. The usual randomized response techniques are based on a fixed probability of having a yes answer. Contrary to usual techniques, in the proposed technique every respondent has a different probability of reporting a yes answer. With this setting, in most of the situations, the proposed technique is observed performing better in terms of variability. To illustrate and support the superiority of the proposed technique it is compared with models such as Warner (1965), Greenberg et al. (1969), Mangat and Singh (1990), and Mangat (1994) using identical Bernoulli trials. Relative efficiency and privacy protection are studied in detail using Warner (1965) and Mangat (1994) models.  相似文献   

17.
In this paper we deal with a Bayesian analysis for right-censored survival data suitable for populations with a cure rate. We consider a cure rate model based on the negative binomial distribution, encompassing as a special case the promotion time cure model. Bayesian analysis is based on Markov chain Monte Carlo (MCMC) methods. We also present some discussion on model selection and an illustration with a real data set.  相似文献   

18.
An increasing number of contemporary datasets are high dimensional. Applications require these datasets be screened (or filtered) to select a subset for further study. Multiple testing is the standard tool in such applications, although alternatives have begun to be explored. In order to assess the quality of selection in these high-dimensional contexts, Cui and Wilson (2008b Cui , X. , Wilson , J. ( 2008b ). On the probability of correct selection for large k populations with application to microarray data . Biometrical Journal 50 ( 5 ): 870883 .[Crossref], [PubMed], [Web of Science ®] [Google Scholar]) proposed two viable methods of calculating the probability that any such selection is correct (PCS). PCS thereby serves as a measure of the quality of competing statistics used for selection. The first simulation study of this article investigates the two PCS statistics of the above article. It shows that in the high-dimensional case PCS can be accurately estimated and is robust under certain conditions. The second simulation study investigates a nonparametric estimator of PCS.  相似文献   

19.
In this article, basic mathematical computations are used to determine the least upper bound on the relative error between the negative binomial cumulative distribution function with parameters n and p and the Poisson cumulative distribution function with mean λ =nq = n(1 ? p). Following this bound, it is indicated that the negative binomial cumulative distribution function can be properly approximated by the Poisson cumulative distribution function whenever q is sufficiently small. Five numerical examples are presented to illustrate the obtained result.  相似文献   

20.
Assessing dose response from flexible‐dose clinical trials is problematic. The true dose effect may be obscured and even reversed in observed data because dose is related to both previous and subsequent outcomes. To remove selection bias, we propose marginal structural models, inverse probability of treatment‐weighting (IPTW) methodology. Potential clinical outcomes are compared across dose groups using a marginal structural model (MSM) based on a weighted pooled repeated measures analysis (generalized estimating equations with robust estimates of standard errors), with dose effect represented by current dose and recent dose history, and weights estimated from the data (via logistic regression) and determined as products of (i) inverse probability of receiving dose assignments that were actually received and (ii) inverse probability of remaining on treatment by this time. In simulations, this method led to almost unbiased estimates of true dose effect under various scenarios. Results were compared with those obtained by unweighted analyses and by weighted analyses under various model specifications. The simulation showed that the IPTW MSM methodology is highly sensitive to model misspecification even when weights are known. Practitioners applying MSM should be cautious about the challenges of implementing MSM with real clinical data. Clinical trial data are used to illustrate the methodology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号