首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Shared frailty models are often used to model heterogeneity in survival analysis. The most common shared frailty model is a model in which hazard function is a product of random factor (frailty) and baseline hazard function which is common to all individuals. There are certain assumptions about the baseline distribution and distribution of frailty. In this article, we consider inverse Gaussian distribution as frailty distribution and three different baseline distributions namely, Weibull, generalized exponential, and exponential power distribution. With these three baseline distributions, we propose three different inverse Gaussian shared frailty models. To estimate the parameters involved in these models we adopt Markov Chain Monte Carlo (MCMC) approach. We present a simulation study to compare the true values of the parameters with the estimated values. Also, we apply these three models to a real life bivariate survival data set of McGilchrist and Aisbett (1991 McGilchrist , C. A. , Aisbett , C. W. ( 1991 ). Regression with frailty in survival analysis . Biometrics 47 : 461466 .[Crossref], [PubMed], [Web of Science ®] [Google Scholar]) related to kidney infection and a better model is suggested for the data.  相似文献   

2.
In this article, we consider two different shared frailty regression models under the assumption of Gompertz as baseline distribution. Mostly assumption of gamma distribution is considered for frailty distribution. To compare the results with gamma frailty model, we consider the inverse Gaussian shared frailty model also. We compare these two models to a real life bivariate survival data set of acute leukemia remission times (Freireich et al., 1963 Freireich, E.J., Gehan, E., Frei, E., Schroeder, L.R., Wolman, I.J., Anbari, R., Burgert, E.O., Mills, S.D., Pinkel, D., Selawry, O.S., Moon, J.H., Gendel, B.R., Spurr, C.L., Storrs, R., Haurani, F., Hoogstraten, B., Lee, S. (1963). The effect of 6-mercaptopurine on the duration of steroid-induced remissions in acute leukemia: a model for evaluation of other potentially useful therapy. Blood 21:699716.[Web of Science ®] [Google Scholar]). Analysis is performed using Markov Chain Monte Carlo methods. Model comparison is made using Bayesian model selection criterion and a well-fitted model is suggested for the acute leukemia data.  相似文献   

3.
ABSTRACT

The shared frailty models are often used to model heterogeneity in survival analysis. The most common shared frailty model is a model in which hazard function is a product of a random factor (frailty) and the baseline hazard function which is common to all individuals. There are certain assumptions about the baseline distribution and the distribution of frailty. In this paper, we consider inverse Gaussian distribution as frailty distribution and three different baseline distributions, namely the generalized Rayleigh, the weighted exponential, and the extended Weibull distributions. With these three baseline distributions, we propose three different inverse Gaussian shared frailty models. We also compare these models with the models where the above-mentioned distributions are considered without frailty. We develop the Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in these models. We present a simulation study to compare the true values of the parameters with the estimated values. A search of the literature suggests that currently no work has been done for these three baseline distributions with a shared inverse Gaussian frailty so far. We also apply these three models by using a real-life bivariate survival data set of McGilchrist and Aisbett (1991 McGilchrist, C.A., Aisbett, C.W. (1991). Regression with frailty in survival analysis. Biometrics 47:461466.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]) related to the kidney infection data and a better model is suggested for the data using the Bayesian model selection criteria.  相似文献   

4.
Shared frailty models are often used to model heterogeneity in survival analysis. There are certain assumptions about the baseline distribution and distribution of frailty. In this paper, four shared frailty models with frailty distribution gamma, inverse Gaussian, compound Poisson, and compound negative binomial with exponential power as baseline distribution are proposed. These models are fitted using Markov Chain Monte Carlo methods. These models are illustrated with a real life bivariate survival data set of McGilchrist and Aisbett (1991) related to kidney infection, and the best model is suggested for the data using different model comparison criteria.  相似文献   

5.
A Comparison of Frailty and Other Models for Bivariate Survival Data   总被引:1,自引:0,他引:1  
Multivariate survival data arise when eachstudy subject may experience multiple events or when study subjectsare clustered into groups. Statistical analyses of such dataneed to account for the intra-cluster dependence through appropriatemodeling. Frailty models are the most popular for such failuretime data. However, there are other approaches which model thedependence structure directly. In this article, we compare thefrailty models for bivariate data with the models based on bivariateexponential and Weibull distributions. Bayesian methods providea convenient paradigm for comparing the two sets of models weconsider. Our techniques are illustrated using two examples.One simulated example demonstrates model choice methods developedin this paper and the other example, based on a practical dataset of onset of blindness among patients with diabetic Retinopathy,considers Bayesian inference using different models.  相似文献   

6.
Frailty models are used in the survival analysis to account for the unobserved heterogeneity in the individual risks to disease and death. To analyze the bivariate data on related survival times (e.g., matched pairs experiments, twin or family data), the shared frailty models were suggested. In this article, we introduce the shared gamma frailty models with the reversed hazard rate. We develop the Bayesian estimation procedure using the Markov chain Monte Carlo (MCMC) technique to estimate the parameters involved in the model. We present a simulation study to compare the true values of the parameters with the estimated values. We apply the model to a real life bivariate survival dataset.  相似文献   

7.
Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times (e.g., matched pairs experiments, twin, or family data), the shared frailty models were suggested. These models are based on the assumption that frailty acts multiplicatively to hazard rate. In this article, we assume that frailty acts additively to hazard rate. We introduce the shared inverse Gaussian frailty models with three different baseline distributions, namely the generalized log-logistic, the generalized Weibull, and exponential power distribution. We introduce the Bayesian estimation procedure using Markov chain Monte Carlo technique to estimate the parameters involved in these models. We apply these models to a real-life bivariate survival dataset of McGilchrist and Aisbett (1991 McGilchrist, C.A., Aisbett, C.W. (1991). Regression with frailty in survival analysis. Biometrics 47:461466.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]) related to the kidney infection data, and a better model is suggested for the data.  相似文献   

8.
In this paper, we consider shared gamma frailty model with the reversed hazard rate (RHR) with two different baseline distributions, namely the generalized inverse Rayleigh and the exponentiated Gumbel distributions. With these two baseline distributions we propose two different shared frailty models. We develop the Bayesian estimation procedure using Markov Chain Monte Carlo technique to estimate the parameters involved in these models. We present a simulation study to compare the true values of the parameters with the estimated values. A search of the literature suggests that currently no work has been done for these two baseline distributions with a shared gamma frailty with the RHR so far. We also apply these two models by using a real life bivariate survival data set of Australian twin data given by Duffy et a1. (1990) and a better model is suggested for the data.  相似文献   

9.
The unknown or unobservable risk factors in the survival analysis cause heterogeneity between individuals. Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times, the shared frailty models were suggested. The most common shared frailty model is a model in which frailty act multiplicatively on the hazard function. In this paper, we introduce the shared gamma frailty model and the inverse Gaussian frailty model with the reversed hazard rate. We introduce the Bayesian estimation procedure using Markov chain Monte Carlo (MCMC) technique to estimate the parameters involved in the model. We present a simulation study to compare the true values of the parameters with the estimated values. We also apply the proposed models to the Australian twin data set and a better model is suggested.  相似文献   

10.
The last decade has witnessed major developments in Geographical Information Systems (GIS) technology resulting in the need for statisticians to develop models that account for spatial clustering and variation. In public health settings, epidemiologists and health-care professionals are interested in discerning spatial patterns in survival data that might exist among the counties. This paper develops a Bayesian hierarchical model for capturing spatial heterogeneity within the framework of proportional odds. This is deemed more appropriate when a substantial percentage of subjects enjoy prolonged survival. We discuss the implementation issues of our models, perform comparisons among competing models and illustrate with data from the SEER (Surveillance Epidemiology and End Results) database of the National Cancer Institute, paying particular attention to the underlying spatial story.  相似文献   

11.
Many analyses in the epidemiological and the prognostic studies and in the studies of event history data require methods that allow for unobserved covariates or “frailties”. We consider the shared frailty model in the framework of parametric proportional hazard model. There are certain assumptions about the distribution of frailty and baseline distribution. The exponential distribution is the commonly used distribution for analyzing lifetime data. In this paper, we consider shared gamma frailty model with bivariate exponential of Marshall and Olkin (1967 Marshall, A.W., Olkin, I. (1967). A multivariate exponential distribution. J. Am. Stat. Assoc. 62:3044.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]) distribution as baseline hazard for bivariate survival times. We solve the inferential problem in a Bayesian framework with the help of a comprehensive simulation study and real data example. We fit the model to the real-life bivariate survival data set of diabetic retinopathy data. We introduce Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in the proposed model and then compare the true values of the parameters with the estimated values for different sample sizes.  相似文献   

12.
Unobserved heterogeneity, also called frailty, is a major concern in the application of survival analysis. The shared frailty models allow for the statistical dependence between the observed survival data. In this paper, we consider shared positive stable frailty model with the reversed hazard rate (RHR) with three different baseline distributions, namely the exponentiated Gumbel, the generalized Rayleigh, and the generalized inverse Rayleigh distributions. With these three baseline distributions we propose three different shared frailty models. We develop the Bayesian estimation procedure using Markov Chain Monte Carlo technique to estimate the parameters involved in these models. We present a simulation study to compare the true values of the parameters with the estimated values. A search of the literature suggests that currently no work has been done for these three baseline distributions with a shared positive stable frailty with the RHR so far. We also apply these three models by using a real-life bivariate survival data set of Australian twin data given by Duffy et a1. (1990 Duffy, D.L., Martin, N.G., Mathews, J.D. (1990). Appendectomy in Australian twins. Aust. J. Hum. Genet. 47(3):590592.[PubMed], [Web of Science ®] [Google Scholar]) and a better model is suggested for the data.  相似文献   

13.
This paper presents a comprehensive review and comparison of five computational methods for Bayesian model selection, based on MCMC simulations from posterior model parameter distributions. We apply these methods to a well-known and important class of models in financial time series analysis, namely GARCH and GARCH-t models for conditional return distributions (assuming normal and t-distributions). We compare their performance with the more common maximum likelihood-based model selection for simulated and real market data. All five MCMC methods proved reliable in the simulation study, although differing in their computational demands. Results on simulated data also show that for large degrees of freedom (where the t-distribution becomes more similar to a normal one), Bayesian model selection results in better decisions in favor of the true model than maximum likelihood. Results on market data show the instability of the harmonic mean estimator and reliability of the advanced model selection methods.  相似文献   

14.
Remote sensing of the earth with satellites yields datasets that can be massive in size, nonstationary in space, and non‐Gaussian in distribution. To overcome computational challenges, we use the reduced‐rank spatial random effects (SRE) model in a statistical analysis of cloud‐mask data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board NASA's Terra satellite. Parameterisations of cloud processes are the biggest source of uncertainty and sensitivity in different climate models’ future projections of Earth's climate. An accurate quantification of the spatial distribution of clouds, as well as a rigorously estimated pixel‐scale clear‐sky‐probability process, is needed to establish reliable estimates of cloud‐distributional changes and trends caused by climate change. Here we give a hierarchical spatial‐statistical modelling approach for a very large spatial dataset of 2.75 million pixels, corresponding to a granule of MODIS cloud‐mask data, and we use spatial change‐of‐Support relationships to estimate cloud fraction at coarser resolutions. Our model is non‐Gaussian; it postulates a hidden process for the clear‐sky probability that makes use of the SRE model, EM‐estimation, and optimal (empirical Bayes) spatial prediction of the clear‐sky‐probability process. Measures of prediction uncertainty are also given.  相似文献   

15.
This paper focuses on estimating the number of species and the number of abundant species in a specific geographic region and, consequently, draw inferences on the number of rare species. The word 'species' is generic referring to any objects in a population that can be categorized. In the areas of biology, ecology, literature, etc, the species frequency distributions are usually severely skewed, in which case the population contains a few very abundant species and many rare ones. To model a such situation, we develop an asymmetric multinomial-Dirichlet probability model using species frequency data. Posterior distributions on the number of species and the number of abundant species are obtained and posterior inferences are induced using MCMC simulations. Simulations are used to demonstrate and evaluate the developed methodology. We apply the method to a DNA segment data set and a butterfly data set. Comparisons among different approaches to inferring the number of species are also discussed in this paper.  相似文献   

16.
Nonparametric regression using linear combinations of basis functions   总被引:1,自引:0,他引:1  
This paper discusses a Bayesian approach to nonparametric regression initially proposed by Smith and Kohn (1996. Journal of Econometrics 75: 317–344). In this approach the regression function is represented as a linear combination of basis terms. The basis terms can be univariate or multivariate functions and can include polynomials, natural splines and radial basis functions. A Bayesian hierarchical model is used such that the coefficient of each basis term can be zero with positive prior probability. The presence of basis terms in the model is determined by latent indicator variables. The posterior mean is estimated by Markov chain Monte Carlo simulation because it is computationally intractable to compute the posterior mean analytically unless a small number of basis terms is used. The present article updates the work of Smith and Kohn (1996. Journal of Econometrics 75: 317–344) to take account of work by us and others over the last three years. A careful discussion is given to all aspects of the model specification, function estimation and the use of sampling schemes. In particular, new sampling schemes are introduced to carry out the variable selection methodology.  相似文献   

17.
ABSTRACT

The living hours data of individuals' time spent on daily activities are compositional and include many zeros because individuals do not pursue all activities every day. Thus, we should exercise caution in using such data for empirical analyses. The Bayesian method offers several advantages in analyzing compositional data. In this study, we analyze the time allocation of Japanese married couples using the Bayesian model. Based on the Bayes factors, we compare models that consider and do not consider the correlations between married couples' time use data. The model that considers the correlation shows superior performance. We show that the Bayesian method can adequately take into account the correlations of wives' and husbands' living hours, facilitating the calculation of partial effects that their activities' variables have on living hours. The partial effects of the model that considers the correlations between the couples' time use are easily calculated from the posterior results.  相似文献   

18.
One critical issue in the Bayesian approach is choosing the priors when there is not enough prior information to specify hyperparameters. Several improper noninformative priors for capture-recapture models were proposed in the literature. It is known that the Bayesian estimate can be sensitive to the choice of priors, especially when sample size is small to moderate. Yet, how to choose a noninformative prior for a given model remains a question. In this paper, as the first step, we consider the problem of estimating the population size for MtMt model using noninformative priors. The MtMt model has prodigious application in wildlife management, ecology, software liability, epidemiological study, census under-count, and other research areas. Four commonly used noninformative priors are considered. We find that the choice of noninformative priors depends on the number of sampling occasions only. The guidelines on the choice of noninformative priors are provided based on the simulation results. Propriety of applying improper noninformative prior is discussed. Simulation studies are developed to inspect the frequentist performance of Bayesian point and interval estimates with different noninformative priors under various population sizes, capture probabilities, and the number of sampling occasions. The simulation results show that the Bayesian approach can provide more accurate estimates of the population size than the MLE for small samples. Two real-data examples are given to illustrate the method.  相似文献   

19.
The study is based on a sample of 965 children living in Oulu region (Finland), who were monitored for acute middle ear infections from birth to the age of two years. We introduce a nonparametrically defined intensity model for ear infections, which involves both fixed and time dependent covariates, such as calendar time, current age, length of breast-feeding time until present, or current type of day care. Unmeasured heterogeneity, which manifests itself in frequent infections in some children and rare in others and which cannot be explained in terms of the known covariates, is modelled by using individual frailty parameters. A Bayesian approach is proposed to solve the inferential problem. The numerical work is carried out by Monte Carlo integration (Metropolis-Hastings algorithm).  相似文献   

20.
A family of threshold nonlinear generalised autoregressive conditionally heteroscedastic models is considered, that allows smooth transitions between regimes, capturing size asymmetry via an exponential smooth transition function. A Bayesian approach is taken and an efficient adaptive sampling scheme is employed for inference, including a novel extension to a recently proposed prior for the smoothing parameter that solves a likelihood identification problem. A simulation study illustrates that the sampling scheme performs well, with the chosen prior kept close to uninformative, while successfully ensuring identification of model parameters and accurate inference for the smoothing parameter. An empirical study confirms the potential suitability of the model, highlighting the presence of both mean and volatility (size) asymmetry; while the model is favoured over modern, popular model competitors, including those with sign asymmetry, via the deviance information criterion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号