首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Double censoring often occurs in registry studies when left censoring is present in addition to right censoring. In this work, we examine estimation of Aalen's nonparametric regression coefficients based on doubly censored data. We propose two estimation techniques. The first type of estimators, including ordinary least squared (OLS) estimator and weighted least squared (WLS) estimators, are obtained using martingale arguments. The second type of estimator, the maximum likelihood estimator (MLE), is obtained via expectation-maximization (EM) algorithms that treat the survival times of left censored observations as missing. Asymptotic properties, including the uniform consistency and weak convergence, are established for the MLE. Simulation results demonstrate that the MLE is more efficient than the OLS and WLS estimators.  相似文献   

2.
Abstract. The Buckley–James estimator (BJE) is a well‐known estimator for linear regression models with censored data. Ritov has generalized the BJE to a semiparametric setting and demonstrated that his class of Buckley–James type estimators is asymptotically equivalent to the class of rank‐based estimators proposed by Tsiatis. In this article, we revisit such relationship in censored data with covariates missing by design. By exploring a similar relationship between our proposed class of Buckley–James type estimating functions to the class of rank‐based estimating functions recently generalized by Nan, Kalbfleisch and Yu, we establish asymptotic properties of our proposed estimators. We also conduct numerical studies to compare asymptotic efficiencies from various estimators.  相似文献   

3.
对于均匀分布给出了在全样本场合下参数的区间估计,在定数截尾场合下参数的点估计和区间估计,并通过大量Monte-Carlo模拟从均方差的角度比较各种点估计的优劣,考察各种区间估计方法的精度,通过实例说明这些点估计和区间估计方法的应用。  相似文献   

4.
For the lifetime (or negative) exponential distribution, the trimmed likelihood estimator has been shown to be explicit in the form of a β‐trimmed mean which is representable as an estimating functional that is both weakly continuous and Fréchet differentiable and hence qualitatively robust at the parametric model. It also has high efficiency at the model. The robustness is in contrast to the maximum likelihood estimator (MLE) involving the usual mean which is not robust to contamination in the upper tail of the distribution. When there is known right censoring, it may be perceived that the MLE which is the most asymptotically efficient estimator may be protected from the effects of ‘outliers’ due to censoring. We demonstrate that this is not the case generally, and in fact, based on the functional form of the estimators, suggest a hybrid defined estimator that incorporates the best features of both the MLE and the β‐trimmed mean. Additionally, we study the pure trimmed likelihood estimator for censored data and show that it can be easily calculated and that the censored observations are not always trimmed. The different trimmed estimators are compared by a modest simulation study.  相似文献   

5.
It is well-known that classical Tobit estimator of the parameters of the censored regression (CR) model is inefficient in case of non-normal error terms. In this paper, we propose to use the modified maximum likelihood (MML) estimator under the Jones and Faddy''s skew t-error distribution, which covers a wide range of skew and symmetric distributions, for the CR model. The MML estimators, providing an alternative to the Tobit estimator, are explicitly expressed and they are asymptotically equivalent to the maximum likelihood estimator. A simulation study is conducted to compare the efficiencies of the MML estimators with the classical estimators such as the ordinary least squares, Tobit, censored least absolute deviations and symmetrically trimmed least squares estimators. The results of the simulation study show that the MML estimators work well among the others with respect to the root mean square error criterion for the CR model. A real life example is also provided to show the suitability of the MML methodology.  相似文献   

6.
The scaled (two-parameter) Type I generalized logistic distribution (GLD) is considered with the known shape parameter. The ML method does not yield an explicit estimator for the scale parameter even in complete samples. In this article, we therefore construct a new linear estimator for scale parameter, based on complete and doubly Type-II censored samples, by making linear approximations to the intractable terms of the likelihood equation using least-squares (LS) method, a new approach of linearization. We call this as linear approximate maximum likelihood estimator (LAMLE). We also construct LAMLE based on Taylor series method of linear approximation and found that this estimator is slightly biased than that based on the LS method. A Monte Carlo simulation is used to investigate the performance of LAMLE and found that it is almost as efficient as MLE, though biased than MLE. We also compare unbiased LAMLE with BLUE based on the exact variances of the estimators and interestingly this new unbiased LAMLE is found just as efficient as the BLUE in both complete and Type-II censored samples. Since MLE is known as asymptotically unbiased, in large samples we compare unbiased LAMLE with MLE and found that this estimator is almost as efficient as MLE. We have also discussed interval estimation of the scale parameter from complete and Type-II censored samples. Finally, we present some numerical examples to illustrate the construction of the new estimators developed here.  相似文献   

7.
Summary.  We consider an extension of conventional univariate Kaplan–Meier-type estimators for the hazard rate and the survivor function to multivariate censored data with a censored random regressor. It is an Akritas-type estimator which adapts the non-parametric conditional hazard rate estimator of Beran to more typical data situations in applied analysis. We show with simulations that the estimator has nice finite sample properties and our implementation appears to be fast. As an application we estimate non-parametric conditional quantile functions with German administrative unemployment duration data.  相似文献   

8.
The properties of robust M-estimators with type II censored failure time data are considered. The optimal members within two classes of ψ-functions are characterized. The first optimality result is the censored data analogue of the optimality result described in Hampel et al. (1986); the estimators corresponding to the optimal members within this class are referred to as the optimal robust estimators. The second result pertains to a restricted class of ψ-functions which is the analogue of the class of ψ-functions considered in James (1986) for randomly censored data; the estimators corresponding to the optimal members within this restricted class are referred to as the optimal James-type estimators. We examine the usefulness of the two classes of ψ-functions and find that the breakdown point and efficiency of the optimal James-type estimators compare favourably with those of the corresponding optimal robust estimators. From the computational point of view, the optimal James-type ψ-functions are readily obtainable from the optimal ψ-functions in the uncensored case. The ψ-functions for the optimal robust estimators require a separate algorithm which is provided. A data set illustrates the optimal robust estimators for the parameters of the extreme value distribution.  相似文献   

9.
It is well-known that the nonparametric maximum likelihood estimator (NPMLE) may severely under-estimate the survival function with left truncated data. Based on the Nelson estimator (for right censored data) and self-consistency we suggest a nonparametric estimator of the survival function, the iterative Nelson estimator (INE), for arbitrarily truncated and censored data, where only few nonparametric estimators are available. By simulation we show that the INE does well in overcoming the under-estimation of the survival function from the NPMLE for left-truncated and interval-censored data. An interesting application of the INE is as a diagnostic tool for other estimators, such as the monotone MLE or parametric MLEs. The methodology is illustrated by application to two real world problems: the Channing House and the Massachusetts Health Care Panel Study data sets.  相似文献   

10.
Data censoring causes ordinary least-square estimators of linear models to be biased and inconsistent. The Tobit estimator yields consistent estimators in the presence of data censoring if the errors are normally distributed. However, nonnormality or heteroscedasticity results in the Tobit estimators being inconsistent. Various estimators have been proposed for circumventing the normality assumption. Some of these estimators include censored least absolute deviations (CLAD), symmetrically censored least-square (SCLS), and partially adaptive estimators. CLAD and SCLS will be consistent in the presence of heteroscedasticity; however, SCLS performs poorly in the presence of asymmetric errors. This article extends the partially adaptive estimation approach to accommodate possible heteroscedasticity as well as nonnormality. A simulation study is used to investigate the estimators’ relative performance in these settings. The partially adaptive censored regression estimators have little efficiency loss for censored normal errors and appear to outperform the Tobit and semiparametric estimators for nonnormal error distributions and be less sensitive to the presence of heteroscedasticity. An empirical example is considered, which supports these results.  相似文献   

11.
Cost assessment serves as an essential part in economic evaluation of medical interventions. In many studies, costs as well as survival data are frequently censored. Standard survival analysis techniques are often invalid for censored costs, due to the induced dependent censoring problem. Owing to high skewness in many cost data, it is desirable to estimate the median costs, which will be available with estimated survival function of costs. We propose a kernel-based survival estimator for costs, which is monotone, consistent, and more efficient than several existing estimators. We conduct numerical studies to examine the finite-sample performance of the proposed estimator.  相似文献   

12.
Summary This paper introduces a Bayesian nonparametric estimator for an unknown distribution function based on left censored observations. Hjort (1990)/Lo (1993) introduced Bayesian nonparametric estimators derived from beta/beta-neutral processes which allow for right censoring. These processes are taken as priors from the class ofneutral to the right processes (Doksum, 1974). The Kaplan-Meier nonparametric product limit estimator can be obtained from these Bayesian nonparametric estimators in the limiting case of a vague prior. The present paper introduces what can be seen as the correspondingleft beta/beta-neutral process prior which allow for left censoring. The Bayesian nonparametyric estimator is obtained as in the corresponding product limit estimator based on left censored data.  相似文献   

13.
Multivariate extreme events are typically modelled using multivariate extreme value distributions. Unfortunately, there exists no finite parametrization for the class of multivariate extreme value distributions. One common approach is to model extreme events using some flexible parametric subclass. This approach has been limited to only two or three dimensions, primarily because suitably flexible high-dimensional parametric models have prohibitively complex density functions. We present an approach that allows a number of popular flexible models to be used in arbitrarily high dimensions. The approach easily handles missing and censored data, and can be employed when modelling componentwise maxima and multivariate threshold exceedances. The approach is based on a representation using conditionally independent marginal components, conditioning on positive stable random variables. We use Bayesian inference, where the conditioning variables are treated as auxiliary variables within Markov chain Monte Carlo simulations. We demonstrate these methods with an application to sea-levels, using data collected at 10 sites on the east coast of England.  相似文献   

14.
In biostatistical applications interest often focuses on the estimation of the distribution of time T between two consecutive events. If the initial event time is observed and the subsequent event time is only known to be larger or smaller than an observed monitoring time C, then the data conforms to the well understood singly-censored current status model, also known as interval censored data, case I. Additional covariates can be used to allow for dependent censoring and to improve estimation of the marginal distribution of T. Assuming a wrong model for the conditional distribution of T, given the covariates, will lead to an inconsistent estimator of the marginal distribution. On the other hand, the nonparametric maximum likelihood estimator of FT requires splitting up the sample in several subsamples corresponding with a particular value of the covariates, computing the NPMLE for every subsample and then taking an average. With a few continuous covariates the performance of the resulting estimator is typically miserable. In van der Laan, Robins (1996) a locally efficient one-step estimator is proposed for smooth functionals of the distribution of T, assuming nothing about the conditional distribution of T, given the covariates, but assuming a model for censoring, given the covariates. The estimators are asymptotically linear if the censoring mechanism is estimated correctly. The estimator also uses an estimator of the conditional distribution of T, given the covariates. If this estimate is consistent, then the estimator is efficient and if it is inconsistent, then the estimator is still consistent and asymptotically normal. In this paper we show that the estimators can also be used to estimate the distribution function in a locally optimal way. Moreover, we show that the proposed estimator can be used to estimate the distribution based on interval censored data (T is now known to lie between two observed points) in the presence of covariates. The resulting estimator also has a known influence curve so that asymptotic confidence intervals are directly available. In particular, one can apply our proposal to the interval censored data without covariates. In Geskus (1992) the information bound for interval censored data with two uniformly distributed monitoring times at the uniform distribution (for T has been computed. We show that the relative efficiency of our proposal w.r.t. this optimal bound equals 0.994, which is also reflected in finite sample simulations. Finally, the good practical performance of the estimator is shown in a simulation study. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Two nonparametric estimators o f the survival distributionare discussed. The estimators were proposed by Kaplan and Meier (1958) and Breslow (1972) and are applicable when dealing with censored data. It is known that they are asymptotically unbiased and uniformly strongly consistent, and when properly normalized that they converge weakly to the same Gaussian process. In this paper, the properties of the estimators are carefully inspected in small or moderate samples. The Breslow estimator, a shrinkage version of the Kaplan-Meier, nearly always has the smaller mean square error (MSE) whenever the truesurvival probabilityis at least 0.20, but has considerably larger MSE than the Kaplan-Meier estimator when the survivalprobability is near zero.  相似文献   

16.
Compared to Type-II censoring, multiply Type-II censoring is a more general, yet mathematically and numerically much more complicated censoring scheme. For multiply Type II censored data from a two-parameter Weibull distribution, we propose several estimators, including MLE, approximate MLE, and estimators corresponding to the BLUE and BLIE from estimating parameters in extreme-value distribution. An approximately unbiased estimator for the shape parameter is also proposed which has the smallest MSE. Numerical examples show that this estimator is the best in terms of bias and MSE. Numerical examples also show that the approximate MLE which admits a closed form is better for estimating the scale parameter.  相似文献   

17.
By considering the solution to a linear approximation of a nonlinear regression problem, a procedure for developing a para¬meter estimator, based upon a nonpammetric estimator of a para¬metric function, is given. The resulting estimators, which are determinable in closed form, are asymptotically normally distri¬buted and are optimal among the class of estimators based upon the function estimator. Further, in many cases, the estimator will have the same asymptotic distribution theory as the correspond¬ing maximum likelihood estimator. Estimators based upon the Kaplan-Meier quantile function are developed for randomly censored samples.  相似文献   

18.
ABSTRACT

We study the estimation of a hazard rate function based on censored data by non-linear wavelet method. We provide an asymptotic formula for the mean integrated squared error (MISE) of nonlinear wavelet-based hazard rate estimators under randomly censored data. We show this MISE formula, when the underlying hazard rate function and censoring distribution function are only piecewise smooth, has the same expansion as analogous kernel estimators, a feature not available for the kernel estimators. In addition, we establish an asymptotic normality of the nonlinear wavelet estimator.  相似文献   

19.
Problems with censored data arise quite frequently in reliability applications. Estimation of the reliability function is usually of concern. Reliability function estimators proposed by Kaplan and Meier (1958), Breslow (1972), are generally used when dealing with censored data. These estimators have the known properties of being asymptotically unbiased, uniformly strongly consistent, and weakly convergent to the same Gaussian process, when properly normalized. We study the properties of the smoothed Kaplan-Meier estimator with a suitable kernel function in this paper. The smooth estimator is compared with the Kaplan-Meier and Breslow estimators for large sample sizes giving an exact expression for an appropriately normalized difference of the mean square error (MSE) of the two estimators. This quantifies the deficiency of the Kaplan-Meier estimator in comparison to the smoothed version. We also obtain a non-asymptotic bound on an expected 1-type error under weak conditions. Some simulations are carried out to examine the performance of the suggested method.  相似文献   

20.
A criterion for choosing an estimator in a family of semi-parametric estimators from incomplete data is proposed. This criterion is the expected observed log-likelihood (ELL). Adapted versions of this criterion in case of censored data and in presence of explanatory variables are exhibited. We show that likelihood cross-validation (LCV) is an estimator of ELL and we exhibit three bootstrap estimators. A simulation study considering both families of kernel and penalized likelihood estimators of the hazard function (indexed on a smoothing parameter) demonstrates good results of LCV and a bootstrap estimator called ELLbboot . We apply the ELLbboot criterion to compare the kernel and penalized likelihood estimators to estimate the risk of developing dementia for women using data from a large cohort study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号