首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The logistic regression model is used when the response variables are dichotomous. In the presence of multicollinearity, the variance of the maximum likelihood estimator (MLE) becomes inflated. The Liu estimator for the linear regression model is proposed by Liu to remedy this problem. Urgan and Tez and Mansson et al. examined the Liu estimator (LE) for the logistic regression model. We introduced the restricted Liu estimator (RLE) for the logistic regression model. Moreover, a Monte Carlo simulation study is conducted for comparing the performances of the MLE, restricted maximum likelihood estimator (RMLE), LE, and RLE for the logistic regression model.  相似文献   

2.
Özkale and Kaciranlar (2007 Özakle , M. R. , Kaciranlar , S. ( 2007 ). The restricted and unrestricted two-parameter estimators . Commun. Statist. Theor. Meth. 36 : 27072725 . [Google Scholar]) proposed a two-parameter estimator (TPE) for the unknown parameter vector in linear regression when exact restrictions are assumed to hold. In this article, under the assumption that the errors are not independent and identically distributed, we introduce a new estimator by combining the ideas underlying the mixed estimator (ME) and the two-parameter estimator when stochastic linear restrictions are assumed to hold. The new estimator is called the stochastic restricted two-parameter estimator (SRTPE) and necessary and sufficient conditions for the superiority of the SRTPE over the ME and TPE are derived by the mean squared error matrix (MSEM) criterion. Furthermore, selection of the biasing parameters is discussed and a numerical example is given to illustrate some of the theoretical results.  相似文献   

3.
Simultaneous estimation problem of gamma shape vector is considered.First, it is shown that the maximum likelihood estimator (MLE), the bias corrected MLE, and the conditional MLE of shape vector are second-order inadmissible. Second, these estimators are improved up to the second order. Finally, we identify whether these improved estimators are second-order admissible or not. Simulation studies are also given.  相似文献   

4.
The regression model suggested by Cox (1972) has been widely used in survival analysis with censored observations. We propose isotonic window estimators for a monotone baseline hazard function in the Cox regression model. We prove that these estimators are asymptotically normal. The simulati on results presented in the article suggest that the proposed estimator performs better than several existing estimators in the literature  相似文献   

5.

We consider nonparametric logistic regression and propose a generalized likelihood test for detecting a threshold effect that indicates a relationship between some risk factor and a defined outcome above the threshold but none below it. One important field of application is occupational medicine and in particular, epidemiological studies. In epidemiological studies, segmented fully parametric logistic regression models are often threshold models, where it is assumed that the exposure has no influence on a response up to a possible unknown threshold, and has an effect beyond that threshold. Finding efficient methods for detection and estimation of a threshold is a very important task in these studies. This article proposes such methods in a context of nonparametric logistic regression. We use a local version of unknown likelihood functions and show that under rather common assumptions the asymptotic power of our test is one. We present a guaranteed non asymptotic upper bound for the significance level of the proposed test. If applying the test yields the acceptance of the conclusion that there was a change point (and hence a threshold limit value), we suggest using the local maximum likelihood estimator of the change point and consider the asymptotic properties of this estimator.  相似文献   

6.
This article applies and investigates a number of logistic ridge regression (RR) parameters that are estimable by using the maximum likelihood (ML) method. By conducting an extensive Monte Carlo study, the performances of ML and logistic RR are investigated in the presence of multicollinearity and under different conditions. The simulation study evaluates a number of methods of estimating the RR parameter k that has recently been developed for use in linear regression analysis. The results from the simulation study show that there is at least one RR estimator that has a lower mean squared error (MSE) than the ML method for all the different evaluated situations.  相似文献   

7.
Abstract.  We propose and study a class of regression models, in which the mean function is specified parametrically as in the existing regression methods, but the residual distribution is modelled non-parametrically by a kernel estimator, without imposing any assumption on its distribution. This specification is different from the existing semiparametric regression models. The asymptotic properties of such likelihood and the maximum likelihood estimate (MLE) under this semiparametric model are studied. We show that under some regularity conditions, the MLE under this model is consistent (when compared with the possibly pseudo-consistency of the parameter estimation under the existing parametric regression model), is asymptotically normal with rate and efficient. The non-parametric pseudo-likelihood ratio has the Wilks property as the true likelihood ratio does. Simulated examples are presented to evaluate the accuracy of the proposed semiparametric MLE method.  相似文献   

8.
Abstract

In this article, we propose a new improved and efficient biased estimation method which is a modified restricted Liu-type estimator satisfying some sub-space linear restrictions in the binary logistic regression model. We study the properties of the new estimator under the mean squared error matrix criterion and our results show that under certain conditions the new estimator is superior to some other estimators. Moreover, a Monte Carlo simulation study is conducted to show the performance of the new estimator in the simulated mean squared error and predictive median squared errors sense. Finally, a real application is considered.  相似文献   

9.
SCAD惩罚逻辑回归的财务预警模型   总被引:2,自引:1,他引:2  
作为一种有监督学习算法,逻辑回归(Logistic Regression,LR)已广泛应用于财务危机建模分析,但其潜在地存在过拟合问题。鉴此,提出一种基于平滑削边绝对偏离(Smoothly Clipped Absolute Deviation,SCAD)惩罚逻辑回归的财务预警模型。该模型不仅能很好地解决模型过拟合问题,而且还可以同时实现变量选择和模型系数估计,并提高了模型的解释性。结合沪深股市A股制造业上市公司的财务数据进行实证研究,同时对比一般的L1正则化和L2正则化逻辑回归模型的预警效果进行实证分析,实验结果表明:SCAD惩罚逻辑回归模型具有较好的分类效果和较强的经济解释能力。  相似文献   

10.
11.
A nonparametric method based on the empirical likelihood is proposed to detect the change-point in the coefficient of linear regression models. The empirical likelihood ratio test statistic is proved to have the same asymptotic null distribution as that with classical parametric likelihood. Under some mild conditions, the maximum empirical likelihood change-point estimator is also shown to be consistent. The simulation results show the sensitivity and robustness of the proposed approach. The method is applied to some real datasets to illustrate the effectiveness.  相似文献   

12.
企业信用状况的定性评价——基于logistic回归模型的分析   总被引:1,自引:1,他引:1  
以材料和机械制造行业100家上市公司综合财务数据为样本数据,采用主成分分析和logistic回归模型,对企业的信用风险进行定性评价,简要评定企业的守信状况,影响企业信用的主要是企业的偿债能力,且同资金的流动性和运营效果密切相关,并给出结论与建议,指导债权人、投资者和交易方投资决策。  相似文献   

13.
缺失偏态数据下线性回归模型的统计推断   总被引:1,自引:2,他引:1  
研究缺失偏态数据下线性回归模型的参数估计问题,针对缺失偏态数据,为克服样本分布扭曲缺点和提高模型的回归系数、尺度参数和偏度参数的估计效果,提出了一种适合偏态数据下线性回归模型中缺失数据的修正回归插补方法.通过随机模拟和实例研究,并与均值插补、回归插补、随机回归插补方法比较,结果表明所提出的修正回归插补方法是有效可行的.  相似文献   

14.
《统计学通讯:理论与方法》2012,41(13-14):2305-2320
We consider shrinkage and preliminary test estimation strategies for the matrix of regression parameters in multivariate multiple regression model in the presence of a natural linear constraint. We suggest a shrinkage and preliminary test estimation strategies for the parameter matrix. The goal of this article is to critically examine the relative performances of these estimators in the direction of the subspace and candidate subspace restricted type estimators. Our analytical and numerical results show that the proposed shrinkage and preliminary test estimators perform better than the benchmark estimator under candidate subspace and beyond. The methods are also applied on a real data set for illustrative purposes.  相似文献   

15.
Logistic models with a random intercept are prevalent in medical and social research where clustered and longitudinal data are often collected. Traditionally, the random intercept in these models is assumed to follow some parametric distribution such as the normal distribution. However, such an assumption inevitably raises concerns about model misspecification and misleading inference conclusions, especially when there is dependence between the random intercept and model covariates. To protect against such issues, we use a semiparametric approach to develop a computationally simple and consistent estimator where the random intercept is distribution‐free. The estimator is revealed to be optimal and achieve the efficiency bound without the need to postulate or estimate any latent variable distributions. We further characterize other general mixed models where such an optimal estimator exists.  相似文献   

16.
In this paper we introduce and study two new families of statistics for the problem of testing linear combinations of the parameters in logistic regression models. These families are based on the phi-divergence measures. One of them includes the classical likelihood ratio statistic and the other the classical Pearson's statistic for this problem. It is interesting to note that the vector of unknown parameters, in the two new families of phi-divergence statistics considered in this paper, is estimated using the minimum phi-divergence estimator instead of the maximum likelihood estimator. Minimum phi-divergence estimators are a natural extension of the maximum likelihood estimator.  相似文献   

17.
18.
In this short note it is demonstrated that although the log-likelihood function for the truncated normal regression model may not be globally concave, it will possess a unique maximum if one exists. This is because the hessian matrix is negative semi-definite when evaluated at any possible solution to the likelihood equations. Since this rules out any saddle points or local minima, more than two local maxima occuring is impossible.  相似文献   

19.
Negative binomial regression (NBR) and Poisson regression (PR) applications have become very popular in the analysis of count data in recent years. However, if there is a high degree of relationship between the independent variables, the problem of multicollinearity arises in these models. We introduce new two-parameter estimators (TPEs) for the NBR and the PR models by unifying the two-parameter estimator (TPE) of Özkale and Kaç?ranlar [The restricted and unrestricted two-parameter estimators. Commun Stat Theory Methods. 2007;36:2707–2725]. These new estimators are general estimators which include maximum likelihood (ML) estimator, ridge estimator (RE), Liu estimator (LE) and contraction estimator (CE) as special cases. Furthermore, biasing parameters of these estimators are given and a Monte Carlo simulation is done to evaluate the performance of these estimators using mean square error (MSE) criterion. The benefits of the new TPEs are also illustrated in an empirical application. The results show that the new proposed TPEs for the NBR and the PR models are better than the ML estimator, the RE and the LE.  相似文献   

20.
In recent years the analysis of interval-censored failure time data has attracted a great deal of attention and such data arise in many fields including demographical studies, economic and financial studies, epidemiological studies, social sciences, and tumorigenicity experiments. This is especially the case in medical studies such as clinical trials. In this article, we discuss regression analysis of one type of such data, Case I interval-censored data, in the presence of left-truncation. For the problem, the additive hazards model is employed and the maximum likelihood method is applied for estimations of unknown parameters. In particular, we adopt the sieve estimation approach that approximates the baseline cumulative hazard function by linear functions. The resulting estimates of regression parameters are shown to be consistent and efficient and have an asymptotic normal distribution. An illustrative example is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号