首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Originally, the exponentially weighted moving average (EWMA) control chart was developed for detecting changes in the process mean. The average run length (ARL) became the most popular performance measure for schemes with this objective. When monitoring the mean of independent and normally distributed observations the ARL can be determined with high precision. Nowadays, EWMA control charts are also used for monitoring the variance. Charts based on the sample variance S2 are an appropriate choice. The usage of ARL evaluation techniques known from mean monitoring charts, however, is difficult. The most accurate method—solving a Fredholm integral equation with the Nyström method—fails due to an improper kernel in the case of chi-squared distributions. Here, we exploit the collocation method and the product Nyström method. These methods are compared to Markov chain based approaches. We see that collocation leads to higher accuracy than currently established methods.  相似文献   

2.
Shewhart, cumulative sum (CUSUM), and exponentially weighted moving average (EWMA) control procedures with variable sampling intervals (VSI) have been investigated in recent years for detecting shifts in the process mean. Such procedures have been shown to be more efficient when compared with the corresponding fixed sampling interval (FSI) charts with respect to the average time to signal (ATS) when the average run length (ARL) values of both types of procedures are held equal. Frequent switching between the different sampling intervals can be a complicating factor in the application of control charts with variable sampling intervals. In this article, we propose using a double exponentially weighted moving average control procedure with variable sampling intervals (VSI-DEWMA) for detecting shifts in the process mean. It is shown that the proposed VSI-DEWMA control procedure is more efficient when compared with the corresponding fixed sampling interval FSI-DEWMA chart with respect to the average time to signal (ATS) when the average run length (ARL) values of both types of procedures are held equal. It is also shown that the VSI-DEWMA procedure reduces the average number of switches between the sampling intervals and has similar ATS properties as compared to the VSI-EMTMA control procedure  相似文献   

3.
ABSTRACT

Runs rules are usually used with Shewhart-type charts to enhance the charts' sensitivities toward small and moderate shifts. Abbas et al. in 2011 took it a step further by proposing two runs rules schemes, applied to the exponentially weighted moving average (EWMA) chart and evaluated their average run length (ARL) performances using simulation. They showed that the proposed schemes are superior to the classical EWMA chart and other schemes being investigated. Besides pointing out some erroneous ARL and standard deviation of the run length (SDRL) computations in Abbas et al., this paper presents a Markov chain approach for computing the ARL, percentiles of the run length (RL) distribution and SDRL, for the two runs rules schemes of Abbas et al. Using Markov chain, we also propose two combined runs rules EWMA schemes to quicken the two schemes of Abbas et al. in responding to large shifts. The runs rules (basic and combined rules) EWMA schemes will be compared with some existing control charting methods, where the former charts are shown to prevail.  相似文献   

4.
Two methods that are often used to evaluate the run length distribution of quality control charts are the Markov chain and integral equation approaches. Both methods have been used to evaluate the cumulative sum (CUSUM) charts and the exponentially weighted moving average (EWMA) control charts. The Markov chain approach involves "discretiz-ing" the possible values which can be plotted. Using properties of finite Markov chains, expressions for the distribution of the run length, and for the average run length (ARL), can be obtained. For the CUSUM and EWMA charts there exist integral equations whose solution gives the ARL. Approximate methods can then be used to solve the integral equation. In this article we show that if the product midpoint rule is used to approximate the integral in the integral equation, then both approaches yield the same approximations for the ARL. In addition we show that the recursive expressions for the probability functions are the same for the two approaches. These results establish the integral equation approach as preferable whenever an integral equation can be found  相似文献   

5.
An accurate numerical procedure is presented for computing the average run length (ARL) of an exponentially weighted moving average (EWMA) chart under a linear drift in the process mean. The performance of an EWMA chart is then evaluated under a linear drift in the mean. In processes where gradual linear drifts rather than abrupt changes in the mean model the shifts in the mean more accurately, an evaluation of the performance of an EWMA chart under a linear drift is more appropriate. Tables of optimal smoothing parameters and control chart limits are given which make the design of EWMA charts easy.  相似文献   

6.
CUSUM control schemes for Gaussian processes   总被引:1,自引:1,他引:0  
A CUSUM control scheme for detecting a change point in a Gaussian process is derived. An upper and a lower bound for the distribution of the run length and for its moments is given. In a Monte Carlo study the average run length (ARL) of this chart is compared with the ARL of two other CUSUM procedures which are based on approximations to the sequential probability ratio, and, moreover, with EWMA schemes for autocorrelated data. Results on the optimal choice of the reference value are presented. Furthermore it is investigated how these charts behave if the model parameters are estimated.  相似文献   

7.
In this article, we propose an exponentially weighted moving average (EWMA) control chart for the shape parameter β of Weibull processes. The chart is based on a moving range when a single measurement is taken per sampling period. We consider both one-sided (lower-sided and upper-sided) and two-sided control charts. We perform simulations to estimate control limits that achieve a specified average run length (ARL) when the process is in control. The control limits we derive are ARL unbiased in that they result in ARL that is shorter than the stable-process ARL when β has shifted. We also perform simulations to determine Phase I sample size requirements if control limits are based on an estimate of β. We compare the ARL performance of the proposed chart to that of the moving range chart proposed in the literature.  相似文献   

8.
The double exponentially weighted moving average (DEWMA) technique has been investigated in recent years for detecting shifts in the process mean and has been shown to be more efficient than the corresponding exponentially weighted moving average (EWMA) technique. In this article, we extend the DEWMA technique of performing exponential smoothing twice to the double moving average (DMA) technique by computing the moving average twice. Using simulation, we show that our proposed DMA chart improves upon the ARL performance of the moving average (MA) chart in detecting mean shifts of small to moderate magnitudes. It is also shown through simulation that, generally, the DMA charts with spans, w = 10 and 15 provide comparable average run length (ARL) performances to the EWMA and cumulative sum (CUSUM) charts, designed for detecting small shifts.  相似文献   

9.
Summary: In this paper the projection approach of Runger (1996) is applied to construct control charts for a multivariate process. It is assumed that a shift in the mean might only occur in a known subspace of the parameter space. The projection method permits a reduction of the dimensionality of the control problem.Several control schemes based on projections are introduced. We consider CUSUM type charts as well as EWMA schemes. The underlying variables are assumed to be independent and normally distributed. Using the average run length all control charts are compared with each other. Moreover, it is analyzed how sensitive the charts react on a false choice of the subspace.  相似文献   

10.
The Weibull distribution is one of the most popular distributions for lifetime modeling. However, there has not been much research on control charts for a Weibull distribution. Shewhart control is known to be inefficient to detect a small shift in the process, while exponentially weighted moving average (EWMA) and cumulative sum control chart (CUSUM) charts have the ability to detect small changes in the process. To enhance the performance of a control chart for a Weibull distribution, we introduce a new control chart based on hybrid EWMA and CUSUM statistic, called the HEWMA-CUSUM chart. The performance of the proposed chart is compared with the existing chart in terms of the average run length (ARL). The proposed chart is found to be more sensitive than the existing chart in ARL. A simulation study is provided for illustration purposes. A real data is also applied to the proposed chart for practical use.  相似文献   

11.
This paper studies the effects of non-normality and autocorrelation on the performances of various individuals control charts for monitoring the process mean and/or variance. The traditional Shewhart X chart and moving range (MR) chart are investigated as well as several types of exponentially weighted moving average (EWMA) charts and combinations of control charts involving these EWMA charts. It is shown that the combination of the X and MR charts will not detect small and moderate parameter shifts as fast as combinations involving the EWMA charts, and that the performana of the X and MR charts is very sensitive to the normality assumption. It is also shown that certain combinations of EWMA charts can be designed to be robust to non-normality and very effective at detecting small and moderate shifts in the process mean and/or variance. Although autocorrelation can have a significant effect on the in-control performances of these combinations of EWMA charts, their relative out-of-control performances under independence are generally maintained for low to moderate levels of autocorrelation.  相似文献   

12.
Control charts are a powerful statistical process monitoring tool often used to monitor the stability of manufacturing processes. In quality control applications, measurement errors adversely affect the performance of control charts. In this paper, we study the effect of measurement error on the detection abilities of the exponentially weighted moving average (EWMA) control charts for monitoring process mean based on ranked set sampling (RSS), median RSS (MRSS), imperfect RSS (IRSS) and imperfect MRSS (IMRSS) schemes. We also study the effect of multiple measurements and non-constant error variance on the performances of the EWMA control charts. The EWMA control chart based on simple random sampling is compared with the EWMA control charts based on RSS, MRSS, IRSS and IMRSS schemes. The performances of the EWMA control charts are evaluated in terms of out-of-control average run length and standard deviation of run lengths. It turns out that the EWMA control charts based on MRSS and IMRSS schemes are better than their counterparts for all measurement error cases considered here.  相似文献   

13.
This article extends the generally weighted moving average (GWMA) technique for detecting changes in process variance. The proposed chart is called the generally weighted moving average variance (GWMAV) chart. Simulation is employed to evaluate the average run length (ARL) characteristics of the GWMAV and EWMA control charts. An extensive comparison of these control charts reveals that the GWMAV chart is more sensitive than the EWMA control charts for detecting small shifts in the variance of a process when the shifts are below 1.35 standard deviations. Additionally, the GWMAV control chart performs little better when the variance shifts are between 1.35 and 1.5 standard deviation, and the 2 charts performs similar when the variance shifts are above 1.5 standard deviation. The design of the GWMAV chart is also discussed.  相似文献   

14.
In this paper various types of EWMA control charts are introduced for the simultaneous monitoring of the mean and the autocovariances. The target process is assumed to be a stationary process up to fourth-order or an ARMA process with heavy tailed innovations. The case of a Gaussian process is included in our results as well. The charts are compared within a simulation study. As a measure of the performance the average run length is taken. The target process is an ARMA (1,1) process with Student-t distributed innovations. The behavior of the charts is analyzed with respect to several out-of-control models. The best design parameters are determined for each chart. Our comparisons show that the multivariate EWMA chart applied to the residuals has the best overall performance.  相似文献   

15.
Control chart is the most important statistical process control tool used to monitor changes in process location and dispersion. In this study, an EWMA control chart is proposed for efficient and robust monitoring of process dispersion. The proposed chart, namely the MDEWMA chart, is based on estimating the process standard deviation (σ) using the mean absolute deviations (MD), taken from the sample median. The performance of the proposed chart has been compared with the EWMASR chart (a dispersion EWMA chart based on sample range) and MD chart (a Shewhart-type dispersion chart based on MD), under the existence and violation of normality assumption. It has been observed that the proposed MDEWMA chart is more efficient and robust when compared with both EWMASR and MD charts in terms of run length (RL) characteristics such as average RL, median RL and standard deviation of the RL distribution.  相似文献   

16.
Compared to the grid search approach to optimal design of control charts, the gradient-based approach is more computationally efficient as the gradient information indicates the direction to search the optimal design parameters. However, the optimal parameters of multivariate exponentially weighted moving average (MEWMA) control charts are often obtained by using grid search in the existing literature. Note that the average run length (ARL) performance of the MEWMA chart can be calculated based on a Markov chain model, making it feasible to estimate the ARL gradient from it. Motivated by this, this paper develops an ARL gradient-based approach for the optimal design and sensitivity analysis of MEWMA control charts. It is shown that the proposed method is able to provide a fast, accurate, and easy-to-implement algorithm for the design and analysis of MEWMA charts, as compared to the conventional design approach based on grid search.  相似文献   

17.
In this article we perform a careful investigation of the double exponentially weighted moving average (DEWMA) chart performance for monitoring the process mean. We compare the performance of this chart to the usual EWMA control chart based on zero-state and worst-case average run length (ARL) measures. We also evaluate the signal resistance measure of the DEWMA chart and compare its maximum value to that of the EWMA chart. We show that the superiority of the DEWMA chart over the simpler standard EWMA chart based on zero-state ARL performance disappears when the smoothing constant of the EWMA chart is chosen to give weights to past observations closer to those given by the DEWMA chart. Moreover, our results show that the standard EWMA chart has much better performance than the DEWMA chart in terms of worst-case ARL values, especially when small smoothing constants are used. We also demonstrate using an illustrative example that the DEWMA chart can build up an exceedingly large amount of inertia when used to monitor the process mean.  相似文献   

18.
Grouped data exponentially weighted moving average control charts   总被引:2,自引:0,他引:2  
In the manufacture of metal fasteners in a progressive die operation, and other industrial situations, important quality dimensions cannot be measured on a continuous scale, and manufactured parts are classified into groups by using a step gauge. This paper proposes a version of exponentially weighted moving average (EWMA) control charts that are applicable to monitoring the grouped data for process shifts. The run length properties of this new grouped data EWMA chart are compared with similar results previously obtained for EWMA charts for variables data and with those for cumulative sum (CUSUM) schemes based on grouped data. Grouped data EWMA charts are shown to be nearly as efficient as variables-based EWMA charts and are thus an attractive alternative when the collection of variables data is not feasible. In addition, grouped data EWMA charts are less affected by the discreteness that is inherent in grouped data than are grouped data CUSUM charts. In the metal fasteners application, grouped data EWMA charts were simple to implement and allowed the rapid detection of undesirable process shifts.  相似文献   

19.
It is often encountered in the literature that the log-likelihood ratios (LLR) of some distributions (e.g. the student t distribution) are not monotonic. Existing charts for monitoring such processes may suffer from the fact that the average run length (ARL) curve is a discontinuous function of control limit. It implies that some pre-specified in-control (IC) ARLs of these charts may not be reached. To guarantee the false alarm rate of a control chart lower than the nominal level, a larger IC ARL is usually suggested in the literature. However, the large IC ARL may weaken the performance of a control chart when the process is out-of-control (OC), compared with a just right IC ARL. To overcome it, we adjust the LLR to be a monotonic one in this paper. Based on it, a multiple CUSUM chart is developed to detect range shifts in IC distribution. Theoretical result in this paper ensures the continuity of its ARL curve. Numerical results show our proposed chart performs well under the range shifts, especially under the large shifts. In the end, a real data example is utilized to illustrate our proposed chart.  相似文献   

20.
In this paper, a new single exponentially weighted moving average (EWMA) control chart based on the weighted likelihood ratio test, referred to as the WLRT chart, is proposed for the problem of monitoring the mean and variance of a normally distributed process variable. It is easy to design, fast to compute, and quite effective for diverse cases including the detection of the decrease in variability and individual observation case. The optimal parameters that can be used as a design aid in selecting specific parameter values based on the average run length (ARL) and the sample size are provided. The in-control (IC) and out-of-control (OC) performance properties of the new chart are compared with some other existing EWMA-type charts. Our simulation results show that the IC run length distribution of the proposed chart is similar to that of a geometric distribution, and it provides quite a robust and satisfactory overall performance for detecting a wide range of shifts in the process mean and/or variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号