首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose the penalized empirical likelihood method via bridge estimator in Cox's proportional hazard model for parameter estimation and variable selection. Under reasonable conditions, we show that penalized empirical likelihood in Cox's proportional hazard model has oracle property. A penalized empirical likelihood ratio for the vector of regression coefficients is defined and its limiting distribution is a chi-square distributions. The advantage of penalized empirical likelihood as a nonparametric likelihood approach is illustrated in testing hypothesis and constructing confidence sets. The method is illustrated by extensive simulation studies and a real example.  相似文献   

2.
We consider a random effects quantile regression analysis of clustered data and propose a semiparametric approach using empirical likelihood. The random regression coefficients are assumed independent with a common mean, following parametrically specified distributions. The common mean corresponds to the population-average effects of explanatory variables on the conditional quantile of interest, while the random coefficients represent cluster specific deviations in the covariate effects. We formulate the estimation of the random coefficients as an estimating equations problem and use empirical likelihood to incorporate the parametric likelihood of the random coefficients. A likelihood-like statistical criterion function is yield, which we show is asymptotically concave in a neighborhood of the true parameter value and motivates its maximizer as a natural estimator. We use Markov Chain Monte Carlo (MCMC) samplers in the Bayesian framework, and propose the resulting quasi-posterior mean as an estimator. We show that the proposed estimator of the population-level parameter is asymptotically normal and the estimators of the random coefficients are shrunk toward the population-level parameter in the first order asymptotic sense. These asymptotic results do not require Gaussian random effects, and the empirical likelihood based likelihood-like criterion function is free of parameters related to the error densities. This makes the proposed approach both flexible and computationally simple. We illustrate the methodology with two real data examples.  相似文献   

3.
Abstract

The purpose of this paper is twofold. First, we investigate estimations in varying-coefficient partially linear errors-in-variables models with covariates missing at random. However, the estimators are often biased due to the existence of measurement errors, the bias-corrected profile least-squares estimator and local liner estimators for unknown parametric and coefficient functions are obtained based on inverse probability weighted method. The asymptotic properties of the proposed estimators both for the parameter and nonparametric parts are established. Second, we study asymptotic distributions of an empirical log-likelihood ratio statistic and maximum empirical likelihood estimator for the unknown parameter. Based on this, more accurate confidence regions of the unknown parameter can be constructed. The methods are examined through simulation studies and illustrated by a real data analysis.  相似文献   

4.
Recently, least absolute deviations (LAD) estimator for median regression models with doubly censored data was proposed and the asymptotic normality of the estimator was established. However, it is invalid to make inference on the regression parameter vectors, because the asymptotic covariance matrices are difficult to estimate reliably since they involve conditional densities of error terms. In this article, three methods, which are based on bootstrap, random weighting, and empirical likelihood, respectively, and do not require density estimation, are proposed for making inference for the doubly censored median regression models. Simulations are also done to assess the performance of the proposed methods.  相似文献   

5.
Li Yan 《Statistics》2015,49(5):978-988
Empirical likelihood inference for generalized linear models with fixed and adaptive designs is considered. It is shown that the empirical log-likelihood ratio at the true parameters converges to the standard chi-square distribution. Furthermore, we obtain the maximum empirical likelihood estimate of the unknown parameter and the resulting estimator is shown to be asymptotically normal. Some simulations are conducted to illustrate the proposed method.  相似文献   

6.
Sieve Empirical Likelihood and Extensions of the Generalized Least Squares   总被引:1,自引:0,他引:1  
The empirical likelihood cannot be used directly sometimes when an infinite dimensional parameter of interest is involved. To overcome this difficulty, the sieve empirical likelihoods are introduced in this paper. Based on the sieve empirical likelihoods, a unified procedure is developed for estimation of constrained parametric or non-parametric regression models with unspecified error distributions. It shows some interesting connections with certain extensions of the generalized least squares approach. A general asymptotic theory is provided. In the parametric regression setting it is shown that under certain regularity conditions the proposed estimators are asymptotically efficient even if the restriction functions are discontinuous. In the non-parametric regression setting the convergence rate of the maximum estimator based on the sieve empirical likelihood is given. In both settings, it is shown that the estimator is adaptive for the inhomogeneity of conditional error distributions with respect to predictor, especially for heteroscedasticity.  相似文献   

7.
Pao-sheng Shen 《Statistics》2015,49(3):602-613
For the regression parameter β in the Cox model, there have been several estimates based on different types of approximated likelihood. For right-censored data, Ren and Zhou [Full likelihood inferences in the Cox model: an empirical approach. Ann Inst Statist Math. 2011;63:1005–1018] derive the full likelihood function for (β, F0), where F0 is the baseline distribution function in the Cox model. In this article, we extend their results to left-truncated and right-censored data with discrete covariates. Using the empirical likelihood parameterization, we obtain the full-profile likelihood function for β when covariates are discrete. Simulation results indicate that the maximum likelihood estimator outperforms Cox's partial likelihood estimator in finite samples.  相似文献   

8.
Under the generalized linear models for a binary variable, an approximate bias of the maximum likelihood estimator of the coefficient, that is a special case of linear parameter in Cordeiro and McCullagh (1991), is derived without a calculation of the third-order derivative of the log likelihood function. Using the obtained approximate bias of the maximum likelihood estimator, a bias-corrected maximum likelihood estimator is defined. Through a simulation study, we show that the bias-corrected maximum likelihood estimator and its variance estimator have a better performance than the maximum likelihood estimator and its variance estimator.  相似文献   

9.
Xia Chen 《Statistics》2013,47(6):745-757
In this paper, we consider the application of the empirical likelihood method to a partially linear model with measurement errors in the non-parametric part. It is shown that the empirical log-likelihood ratio at the true parameters converges to the standard chi-square distribution. Furthermore, we obtain the maximum empirical likelihood estimate of the unknown parameter by using the empirical log-likelihood ratio function, and the resulting estimator is shown to be asymptotically normal. Some simulations and an application are conducted to illustrate the proposed method.  相似文献   

10.
We focus on the nonparametric regression of a scalar response on a functional explanatory variable. As an alternative to the well-known Nadaraya-Watson estimator for regression function in this framework, the locally modelled regression estimator performs very well [cf. [Barrientos-Marin, J., Ferraty, F., and Vieu, P. (2010), ‘Locally Modelled Regression and Functional Data’, Journal of Nonparametric Statistics, 22, 617–632]. In this paper, the asymptotic properties of locally modelled regression estimator for functional data are considered. The mean-squared convergence as well as asymptotic normality for the estimator are established. We also adapt the empirical likelihood method to construct the point-wise confidence intervals for the regression function and derive the Wilk's phenomenon for the empirical likelihood inference. Furthermore, a simulation study is presented to illustrate our theoretical results.  相似文献   

11.
The paper examines the small and large lattice properties of the exact maximum likelihood estimator for a spatial model where parameter estimation and missing data estimation are tackled simultaneously, A first order conditional autoregressive model is examined in detail. The paper concludes with an empirical analysis of remotely sensed data.  相似文献   

12.
Empirical likelihood inferences for the parameter component in an additive partially linear errors-in-variables model with longitudinal data are investigated in this article. A corrected-attenuation block empirical likelihood procedure is used to estimate the regression coefficients, a corrected-attenuation block empirical log-likelihood ratio statistic is suggested and its asymptotic distribution is obtained. Compared with the method based on normal approximations, our proposed method does not require any consistent estimator for the asymptotic variance and bias. Simulation studies indicate that our proposed method performs better than the method based on normal approximations in terms of relatively higher coverage probabilities and smaller confidence regions. Furthermore, an example of an air pollution and health data set is used to illustrate the performance of the proposed method.  相似文献   

13.
The inverse hypergeometric distribution is of interest in applications of inverse sampling without replacement from a finite population where a binary observation is made on each sampling unit. Thus, sampling is performed by randomly choosing units sequentially one at a time until a specified number of one of the two types is selected for the sample. Assuming the total number of units in the population is known but the number of each type is not, we consider the problem of estimating this parameter. We use the Delta method to develop approximations for the variance of three parameter estimators. We then propose three large sample confidence intervals for the parameter. Based on these results, we selected a sampling of parameter values for the inverse hypergeometric distribution to empirically investigate performance of these estimators. We evaluate their performance in terms of expected probability of parameter coverage and confidence interval length calculated as means of possible outcomes weighted by the appropriate outcome probabilities for each parameter value considered. The unbiased estimator of the parameter is the preferred estimator relative to the maximum likelihood estimator and an estimator based on a negative binomial approximation, as evidenced by empirical estimates of closeness to the true parameter value. Confidence intervals based on the unbiased estimator tend to be shorter than the two competitors because of its relatively small variance but at a slight cost in terms of coverage probability.  相似文献   

14.
In this article, we consider empirical likelihood inference for the parameter in the additive partially linear models when the linear covariate is measured with error. By correcting for attenuation, a corrected-attenuation empirical log-likelihood ratio statistic for the unknown parameter β, which is of primary interest, is suggested. We show that the proposed statistic is asymptotically standard chi-square distribution without requiring the undersmoothing of the nonparametric components, and hence it can be directly used to construct the confidence region for the parameter β. Some simulations indicate that, in terms of comparison between coverage probabilities and average lengths of the confidence intervals, the proposed method performs better than the profile-based least-squares method. We also give the maximum empirical likelihood estimator (MELE) for the unknown parameter β, and prove the MELE is asymptotically normal under some mild conditions.  相似文献   

15.
Abstract.  This paper proposes a constrained empirical likelihood confidence region for a parameter in the semi-linear errors-in-variables model. The confidence region is constructed by combining the score function corresponding to the squared orthogonal distance with a constraint on the parameter, and it overcomes that the solution of limiting mean estimation equations is not unique. It is shown that the empirical log likelihood ratio at the true parameter converges to the standard chi-square distribution. Simulations show that the proposed confidence region has coverage probability which is closer to the nominal level, as well as narrower than those of normal approximation of generalized least squares estimator in most cases. A real data example is given.  相似文献   

16.
This paper introduces a new shrinkage estimator for the negative binomial regression model that is a generalization of the estimator proposed for the linear regression model by Liu [A new class of biased estimate in linear regression, Comm. Stat. Theor. Meth. 22 (1993), pp. 393–402]. This shrinkage estimator is proposed in order to solve the problem of an inflated mean squared error of the classical maximum likelihood (ML) method in the presence of multicollinearity. Furthermore, the paper presents some methods of estimating the shrinkage parameter. By means of Monte Carlo simulations, it is shown that if the Liu estimator is applied with these shrinkage parameters, it always outperforms ML. The benefit of the new estimation method is also illustrated in an empirical application. Finally, based on the results from the simulation study and the empirical application, a recommendation regarding which estimator of the shrinkage parameter that should be used is given.  相似文献   

17.
In this paper, a new estimator for a conditional quantile is proposed by using the empirical likelihood method and local linear fitting when some auxiliary information is available. The asymptotic normality of the estimator at both boundary and interior points is established. It is shown that the asymptotic variance of the proposed estimator is smaller than those of the usual kernel estimators at interior points, and that the proposed estimator has the desired sampling properties at both boundary and interior points. Therefore, no boundary modifications are required in our estimation.  相似文献   

18.
Kendall and Gehan estimating functions are commonly used to estimate the regression parameter in accelerated failure time model with censored observations in survival analysis. In this paper, we apply the jackknife empirical likelihood method to overcome the computation difficulty about interval estimation. A Wilks’ theorem of jackknife empirical likelihood for U-statistic type estimating equations is established, which is used to construct the confidence intervals for the regression parameter. We carry out an extensive simulation study to compare the Wald-type procedure, the empirical likelihood method, and the jackknife empirical likelihood method. The proposed jackknife empirical likelihood method has a better performance than the existing methods. We also use a real data set to compare the proposed methods.  相似文献   

19.
It is widely accepted that jumps exist in the asset price process. The jump activity index is a natural measure of how frequent the jumps are. Statistical inference of the jump activity index is of importance in determining the type of process that underlies the dynamics of the log price process. In this paper, we implement the empirical likelihood approach to construct the confidence interval of the jump activity index of a pure jump model using high frequency data. Wilks' theorem is established. We also extend the result on Zhao and Wu (2009)'s estimator to the more general framework in this paper. Simulation studies demonstrate the good performance of the empirical likelihood approach. Compared with the existing non-parametric estimator proposed by Zhao and Wu (2009), the empirical likelihood approach gives more accurate coverage probabilities in the simulation studies.  相似文献   

20.
The paper studies the properties of a sequential maximum likelihood estimator of the drift parameter in a one dimensional reflected Ornstein-Uhlenbeck process. We observe the process until the observed Fisher information reaches a specified precision level. We derive the explicit formulas for the sequential estimator and its mean squared error. The estimator is shown to be unbiased and uniformly normally distributed. A simulation study is conducted to assess the performance of the estimator compared with the ordinary maximum likelihood estimator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号