首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This article presents a natural conjugate prior for the nonhomogeneous Poisson process (NHPP) with an exponential intensity function, for modeling the failure rate of repairable systems. The behavior of the conjugate prior distribution with respect to its parameters is studied, and the use of this prior in Bayesian estimation is compared to two other estimation approaches (the use of independent prior distributions, and the bivariate normal distribution). The use of the conjugate prior proposed here facilitates Bayesian statistical analysis of aging. In particular, the proposed prior allows us to explicitly account for dependence between the initial failure rate and the aging rate. This is a significant improvement over the assumptions made in most prior work (either the assumption that the aging rate is known, or the assumption that the initial failure rate and the aging rate are independent). Monte Carlo simulation shows that Bayesian estimation using the proposed prior generally performs at least as well as Bayesian estimation using independent priors for the initial failure rate and the aging rate,except in the case where the prior distribution underestimates both the initial failure rate and the aging rate.  相似文献   

2.
In most software reliability models which utilize the nonhomogeneous Poisson process (NHPP), the intensity function for the counting process is usually assumed to be continuous and monotone. However, on account of various practical reasons, there may exist some change points in the intensity function and thus the assumption of continuous and monotone intensity function may be unrealistic in many real situations. In this article, the Bayesian change-point approach using beta-mixtures for modeling the intensity function with possible change points is proposed. The hidden Markov model with non constant transition probabilities is applied to the beta-mixture for detecting the change points of the parameters. The estimation and interpretation of the model is illustrated using the Naval Tactical Data System (NTDS) data. The proposed change point model will be also compared with the competing models via marginal likelihood. It can be seen that the proposed model has the highest marginal likelihood and outperforms the competing models.  相似文献   

3.
Regularization methods for simultaneous variable selection and coefficient estimation have been shown to be effective in quantile regression in improving the prediction accuracy. In this article, we propose the Bayesian bridge for variable selection and coefficient estimation in quantile regression. A simple and efficient Gibbs sampling algorithm was developed for posterior inference using a scale mixture of uniform representation of the Bayesian bridge prior. This is the first work to discuss regularized quantile regression with the bridge penalty. Both simulated and real data examples show that the proposed method often outperforms quantile regression without regularization, lasso quantile regression, and Bayesian lasso quantile regression.  相似文献   

4.
We develop a Bayesian estimation method to non-parametric mixed-effect models under shape-constrains. The approach uses a hierarchical Bayesian framework and characterizations of shape-constrained Bernstein polynomials (BPs). We employ Markov chain Monte Carlo methods for model fitting, using a truncated normal distribution as the prior for the coefficients of BPs to ensure the desired shape constraints. The small sample properties of the Bayesian shape-constrained estimators across a range of functions are provided via simulation studies. Two real data analysis are given to illustrate the application of the proposed method.  相似文献   

5.
Abstract

This paper considers the statistical analysis of masked data in a parallel system with inverse Weibull distributed components under type II censoring. Based on Gamma conjugate prior, the Bayesian estimation as well as the hierarchical Bayesian estimation for the parameters and the reliability function of system are obtained by using the Bayesian theory and the hierarchical Bayesian method. Finally, Monte Carlo simulations are provided to compare the performances of the estimates under different masking probabilities and effective sample sizes.  相似文献   

6.
This paper demonstrates that cross-validation (CV) and Bayesian adaptive bandwidth selection can be applied in the estimation of associated kernel discrete functions. This idea is originally proposed by Brewer [A Bayesian model for local smoothing in kernel density estimation, Stat. Comput. 10 (2000), pp. 299–309] to derive variable bandwidths in adaptive kernel density estimation. Our approach considers the adaptive binomial kernel estimator and treats the variable bandwidths as parameters with beta prior distribution. The best variable bandwidth selector is estimated by the posterior mean in the Bayesian sense under squared error loss. Monte Carlo simulations are conducted to examine the performance of the proposed Bayesian adaptive approach in comparison with the performance of the Asymptotic mean integrated squared error estimator and CV technique for selecting a global (fixed) bandwidth proposed in Kokonendji and Senga Kiessé [Discrete associated kernels method and extensions, Stat. Methodol. 8 (2011), pp. 497–516]. The Bayesian adaptive bandwidth estimator performs better than the global bandwidth, in particular for small and moderate sample sizes.  相似文献   

7.
A Bayesian elastic net approach is presented for variable selection and coefficient estimation in linear regression models. A simple Gibbs sampling algorithm was developed for posterior inference using a location-scale mixture representation of the Bayesian elastic net prior for the regression coefficients. The penalty parameters are chosen through an empirical method that maximizes the data marginal likelihood. Both simulated and real data examples show that the proposed method performs well in comparison to the other approaches.  相似文献   

8.
We develop strategies for Bayesian modelling as well as model comparison, averaging and selection for compartmental models with particular emphasis on those that occur in the analysis of positron emission tomography (PET) data. Both modelling and computational issues are considered. Biophysically inspired informative priors are developed for the problem at hand, and by comparison with default vague priors it is shown that the proposed modelling is not overly sensitive to prior specification. It is also shown that an additive normal error structure does not describe measured PET data well, despite being very widely used, and that within a simple Bayesian framework simultaneous parameter estimation and model comparison can be performed with a more general noise model. The proposed approach is compared with standard techniques using both simulated and real data. In addition to good, robust estimation performance, the proposed technique provides, automatically, a characterisation of the uncertainty in the resulting estimates which can be considerable in applications such as PET.  相似文献   

9.
We propose a Bayesian nonparametric procedure for density estimation, for data in a closed, bounded interval, say [0,1]. To this aim, we use a prior based on Bemstein polynomials. This corresponds to expressing the density of the data as a mixture of given beta densities, with random weights and a random number of components. The density estimate is then obtained as the corresponding predictive density function. Comparison with classical and Bayesian kernel estimates is provided. The proposed procedure is illustrated in an example; an MCMC algorithm for approximating the estimate is also discussed.  相似文献   

10.
The Jeffreys-rule prior and the marginal independence Jeffreys prior are recently proposed in Fonseca et al. [Objective Bayesian analysis for the Student-t regression model, Biometrika 95 (2008), pp. 325–333] as objective priors for the Student-t regression model. The authors showed that the priors provide proper posterior distributions and perform favourably in parameter estimation. Motivated by a practical financial risk management application, we compare the performance of the two Jeffreys priors with other priors proposed in the literature in a problem of estimating high quantiles for the Student-t model with unknown degrees of freedom. Through an asymptotic analysis and a simulation study, we show that both Jeffreys priors perform better in using a specific quantile of the Bayesian predictive distribution to approximate the true quantile.  相似文献   

11.
The bathtub-shaped failure rate function has been used for modeling the life spans of a number of electronic and mechanical products, as well as for modeling the life spans of humans, especially when some of the data are censored. This article addresses robust methods for the estimation of unknown parameters in a two-parameter distribution with a bathtub-shaped failure rate function based on progressive Type-II censored samples. Here, a class of flexible priors is considered by using the hierarchical structure of a conjugate prior distribution, and corresponding posterior distributions are obtained in a closed-form. Then, based on the square error loss function, Bayes estimators of unknown parameters are derived, which depend on hyperparameters as parameters of the conjugate prior. In order to eliminate the hyperparameters, hierarchical Bayesian estimation methods are proposed, and these proposed estimators are compared to one another based on the mean squared error, through Monte Carlo simulations for various progressively Type-II censoring schemes. Finally, a real dataset is presented for the purpose of illustration.  相似文献   

12.
This article is concerned with the study of intraclass correlations in the mixed linear model. A brief account of the shortcomings of the existing meth¬ods (frequentist. likelihood and Bayesian) is followed by alternative Bayesian parametrizations involving intraclass correlations and variance ratios. Our prior specifications accommodate a priori dependencies as well as situations which involve little or no prior information. We give examples of interval estimation and hypothesis testing using data from an animal breeding study.  相似文献   

13.
We consider a general class of prior distributions for nonparametric Bayesian estimation which uses finite random series with a random number of terms. A prior is constructed through distributions on the number of basis functions and the associated coefficients. We derive a general result on adaptive posterior contraction rates for all smoothness levels of the target function in the true model by constructing an appropriate ‘sieve’ and applying the general theory of posterior contraction rates. We apply this general result on several statistical problems such as density estimation, various nonparametric regressions, classification, spectral density estimation and functional regression. The prior can be viewed as an alternative to the commonly used Gaussian process prior, but properties of the posterior distribution can be analysed by relatively simpler techniques. An interesting approximation property of B‐spline basis expansion established in this paper allows a canonical choice of prior on coefficients in a random series and allows a simple computational approach without using Markov chain Monte Carlo methods. A simulation study is conducted to show that the accuracy of the Bayesian estimators based on the random series prior and the Gaussian process prior are comparable. We apply the method on Tecator data using functional regression models.  相似文献   

14.
This article considers a Bayesian hierarchical model for multiple comparisons in linear models where the population medians satisfy a simple order restriction. Representing the asymmetric Laplace distribution as a scale mixture of normals with an exponential mixing density and a continuous prior restricted to order constraints, a Gibbs sampling algorithm for parameter estimation and simultaneous comparison of treatment medians is proposed. Posterior probabilities of all possible hypotheses on the equality/inequality of treatment medians are estimated using Bayes factors that are computed via the Savage-Dickey density ratios. The performance of the proposed median-based model is investigated in the simulated and real datasets. The results show that the proposed method can outperform the commonly used method that is based on treatment means, when data are from nonnormal distributions.  相似文献   

15.
In this paper, we develop a Bayesian estimation procedure for semiparametric models under shape constrains. The approach uses a hierarchical Bayes framework and characterizations of shape-constrained B-splines. We employ Markov chain Monte Carlo methods for model fitting, using a truncated normal distribution as the prior for the coefficients of basis functions to ensure the desired shape constraints. The small sample properties of the function estimators are provided via simulation and compared with existing methods. A real data analysis is conducted to illustrate the application of the proposed method.  相似文献   

16.
Bridge penalized regression has many desirable statistical properties such as unbiasedness, sparseness as well as ‘oracle’. In Bayesian framework, bridge regularized penalty can be implemented based on generalized Gaussian distribution (GGD) prior. In this paper, we incorporate Bayesian bridge-randomized penalty and its adaptive version into the quantile regression (QR) models with autoregressive perturbations to conduct Bayesian penalization estimation. Employing the working likelihood of the asymmetric Laplace distribution (ALD) perturbations, the Bayesian joint hierarchical models are established. Based on the mixture representations of the ALD and generalized Gaussian distribution (GGD) priors of coefficients, the hybrid algorithms based on Gibbs sampler and Metropolis-Hasting sampler are provided to conduct fully Bayesian posterior estimation. Finally, the proposed Bayesian procedures are illustrated by some simulation examples and applied to a real data application of the electricity consumption.  相似文献   

17.
A novel framework is proposed for the estimation of multiple sinusoids from irregularly sampled time series. This spectral analysis problem is addressed as an under-determined inverse problem, where the spectrum is discretized on an arbitrarily thin frequency grid. As we focus on line spectra estimation, the solution must be sparse, i.e. the amplitude of the spectrum must be zero almost everywhere. Such prior information is taken into account within the Bayesian framework. Two models are used to account for the prior sparseness of the solution, namely a Laplace prior and a Bernoulli–Gaussian prior, associated to optimization and stochastic sampling algorithms, respectively. Such approaches are efficient alternatives to usual sequential prewhitening methods, especially in case of strong sampling aliases perturbating the Fourier spectrum. Both methods should be intensively tested on real data sets by physicists.  相似文献   

18.
The article presents the Bayesian inference for the parameters of randomly censored Burr-type XII distribution with proportional hazards. The joint conjugate prior of the proposed model parameters does not exist; we consider two different systems of priors for Bayesian estimation. The explicit forms of the Bayes estimators are not possible; we use Lindley's method to obtain the Bayes estimates. However, it is not possible to obtain the Bayesian credible intervals with Lindley's method; we suggest the Gibbs sampling procedure for this purpose. Numerical experiments are performed to check the properties of the different estimators. The proposed methodology is applied to a real-life data for illustrative purposes. The Bayes estimators are compared with the Maximum likelihood estimators via numerical experiments and real data analysis. The model is validated using posterior predictive simulation in order to ascertain its appropriateness.  相似文献   

19.
We consider an empirical Bayes approach to standard nonparametric regression estimation using a nonlinear wavelet methodology. Instead of specifying a single prior distribution on the parameter space of wavelet coefficients, which is usually the case in the existing literature, we elicit the ?-contamination class of prior distributions that is particularly attractive to work with when one seeks robust priors in Bayesian analysis. The type II maximum likelihood approach to prior selection is used by maximizing the predictive distribution for the data in the wavelet domain over a suitable subclass of the ?-contamination class of prior distributions. For the prior selected, the posterior mean yields a thresholding procedure which depends on one free prior parameter and it is level- and amplitude-dependent, thus allowing better adaptation in function estimation. We consider an automatic choice of the free prior parameter, guided by considerations on an exact risk analysis and on the shape of the thresholding rule, enabling the resulting estimator to be fully automated in practice. We also compute pointwise Bayesian credible intervals for the resulting function estimate using a simulation-based approach. We use several simulated examples to illustrate the performance of the proposed empirical Bayes term-by-term wavelet scheme, and we make comparisons with other classical and empirical Bayes term-by-term wavelet schemes. As a practical illustration, we present an application to a real-life data set that was collected in an atomic force microscopy study.  相似文献   

20.
Bayesian inference for multivariate gamma distributions   总被引:2,自引:1,他引:1  
The paper considers the multivariate gamma distribution for which the method of moments has been considered as the only method of estimation due to the complexity of the likelihood function. With a non-conjugate prior, practical Bayesian analysis can be conducted using Gibbs sampling with data augmentation. The new methods are illustrated using artificial data for a trivariate gamma distribution as well as an application to technical inefficiency estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号