首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
LetX andY be two random variables with finite expectationsE X andE Y, respectively. ThenX is said to be smaller thanY in the dilation order ifE[ϕ(X-E X)]≤E[ϕ(Y-E Y)] for any convex functionϕ for which the expectations exist. In this paper we obtain a new characterization of the dilation order. This characterization enables us to give new interpretations to the dilation order, and using them we identify conditions which imply the dilation order. A sample of applications of the new characterization is given. Partially supported by MURST 40% Program on Non-Linear Systems and Applications. Partially supported by “Gruppo Nazionale per l'Analisi Funzionale e sue Applicazioni”—CNR.  相似文献   

3.
In this paper, by considering a 2n-dimensional elliptically contoured random vector (XT,YT)T=(X1,…,Xn,Y1,…,Yn)T, we derive the exact joint distribution of linear combinations of concomitants of order statistics arising from X. Specifically, we establish a mixture representation for the distribution of the rth concomitant order statistic, and also for the joint distribution of the rth order statistic and its concomitant. We show that these distributions are indeed mixtures of multivariate unified skew-elliptical distributions. The two most important special cases of multivariate normal and multivariate t distributions are then discussed in detail. Finally, an application of the established results in an inferential problem is outlined.  相似文献   

4.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

5.
ABSTRACT

Concomitants of order statistics are considered for the situation in which the random vectors (X 1, Y 1), (X 2, Y 2),…, (X n , Y n ) are independent but otherwise arbitrarily distributed. The joint and marginal distributions of the concomitants of order statistics and stochastic comparisons among the concomitants of order statistics are studied in this situation.  相似文献   

6.
Let X 1,X 2,…,X n be independent exponential random variables such that X i has hazard rate λ for i = 1,…,p and X j has hazard rate λ* for j = p + 1,…,n, where 1 ≤ p < n. Denote by D i:n (λ, λ*) = X i:n  ? X i?1:n the ith spacing of the order statistics X 1:n  ≤ X 2:n  ≤ ··· ≤ X n:n , i = 1,…,n, where X 0:n ≡ 0. It is shown that the spacings (D 1,n ,D 2,n ,…,D n:n ) are MTP2, strengthening one result of Khaledi and Kochar (2000), and that (D 1:n 2, λ*),…,D n:n 2, λ*)) ≤ lr (D 1:n 1, λ*),…,D n:n 1, λ*)) for λ1 ≤ λ* ≤ λ2, where ≤ lr denotes the multivariate likelihood ratio order. A counterexample is also given to show that this comparison result is in general not true for λ* < λ1 < λ2.  相似文献   

7.
Let X1:n ≤ X2:n ≤···≤ Xn:n denote the order statistics of a sample of n independent random variables X1, X2,…, Xn, all identically distributed as some X. It is shown that if X has a log-convex [log-concave] density function, then the general spacing vector (Xk1:n, Xk2:n ? Xk1:n,…, Xkr:n ? Xkr?1:n) is MTP2 [S-MRR2] whenever 1 ≤ k1 < k2 <···< kr ≤ n and 1 ≤ r ≤ n. Multivariate likelihood ratio ordering of such general spacing vectors corresponding to two random samples is also considered. These extend some of the results in the literature for usual spacing vectors.  相似文献   

8.
LetF(x,y) be a distribution function of a two dimensional random variable (X,Y). We assume that a distribution functionF x(x) of the random variableX is known. The variableX will be called an auxiliary variable. Our purpose is estimation of the expected valuem=E(Y) on the basis of two-dimensional simple sample denoted by:U=[(X 1, Y1)…(Xn, Yn)]=[X Y]. LetX=[X 1X n]andY=[Y 1Y n].This sample is drawn from a distribution determined by the functionF(x,y). LetX (k)be the k-th (k=1, …,n) order statistic determined on the basis of the sampleX. The sampleU is truncated by means of this order statistic into two sub-samples: % MathType!End!2!1! and % MathType!End!2!1!.Let % MathType!End!2!1! and % MathType!End!2!1! be the sample means from the sub-samplesU k,1 andU k,2, respectively. The linear combination % MathType!End!2!1! of these means is the conditional estimator of the expected valuem. The coefficients of this linear combination depend on the distribution function of auxiliary variable in the pointx (k).We can show that this statistic is conditionally as well as unconditionally unbiased estimator of the averagem. The variance of this estimator is derived. The variance of the statistic % MathType!End!2!1! is compared with the variance of the order sample mean. The generalization of the conditional estimation of the mean is considered, too.  相似文献   

9.
In this paper, by assuming that (X, Y 1, Y 2)T has a trivariate elliptical distribution, we derive the exact joint distribution of X and a linear combination of order statistics from (Y 1, Y 2)T and show that it is a mixture of unified bivariate skew-elliptical distributions. We then derive the corresponding marginal and conditional distributions for the special case of t kernel. We also present these results for an exchangeable case with t kernel and illustrate the established results with an air-pollution data.  相似文献   

10.
ABSTRACT

In this article, we consider a (k + 1)n-dimensional elliptically contoured random vector (XT1, X2T, …, XTk, ZT)T = (X11, …, X1n, …, Xk1, …, Xkn, Z1, …, Zn)T and derive the distribution of concomitant of multivariate order statistics arising from X1, X2, …, Xk. Specially, we derive a mixture representation for concomitant of bivariate order statistics. The joint distribution of the concomitant of bivariate order statistics is also obtained. Finally, the usefulness of our result is illustrated by a real-life data.  相似文献   

11.
Let X1Y1,…, Yn be independent random variables. We characterize the distributions of X and Yj satisfying the equation {X+Y1++Yn}=dX, where {Z} denotes the fractional part of a random variable Z. In the case of full generality, either X is uniformly distributed on [0,1), or Yj has.a shifted lattice distribution and X is shift-invariant. We also give a characterization of shift-invariant distributions. Finally, we consider some special cases of this equation.  相似文献   

12.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

13.
The problem of prodicting max (X1X2) given min(X1X2) is considered when Y1and Y2 are i.i.d random variables making positive integral values. It is provea tnat tne oest predictor is a linear Function or min(X1,X2); with unit slope Iff X1, and X2 have geometric distributions. As an extension of this result, the geometric distribution is characterized by the constancy of regression of min(X1?X2|, c) on inin(X1,X2) where c is any positive integer.  相似文献   

14.
15.
Abstract

Let X 1, …, X m and Y 1, …, Y n be independent random variables, where X 1, …, X m are i.i.d. with continuous distribution function (df) F, and Y 1, …, Y n are i.i.d. with continuous df G. For testing the hypothesis H 0: F = G, we introduce and study analogues of the celebrated Kolmogorov–Smirnov and one- and two-sided Cramér-von Mises statistics that are functionals of a suitably integrated two-sample empirical process. Furthermore, we characterize those distributions for which the new tests are locally Bahadur optimal within the setting of shift alternatives.  相似文献   

16.
Given two jointly observed random vectors Y and Z of the same dimension, let Y be a reordered version of Y and Z the resulting vector of concomitants of order statistics. When X is a covariate of interest, also jointly observed with Y, the authors obtain the joint covariance structure of (X, y, Z) and the related correlation parameters explicitly, under the assumption that the vector (X, Y, Z) is normal and that its joint covariance structure is permutation symmetric. They also discuss extensions to elliptically contoured distributions.  相似文献   

17.
《随机性模型》2013,29(2):157-190
In this paper, we establish an explicit form of matrix decompositions for the queue length distributions of the MAP/G/1 queues under multiple and single vacations with N-policy. We show that the vector generating function Y (z) of the queue length at an arbitrary time and X (z) at departures are decomposed into Y (z) = p idle (z Y (z) and X (z) = p idle (z X (z) where p idle (z) is the vector generating function of the queue length at an arbitrary epoch at which the server is not in service, and ζ Y (z) and ζ X (z) are unidentified matrix generating functions.  相似文献   

18.
Consider a two-dimensional discrete random variable (X, Y) with possible values 1, 2, …, I for X and 1, 2, …, J for Y. For specifying the distribution of (X, Y), suppose both conditional distributions, of X given Y and of Y given X, are provided. Under this setting, we present here different ways of measuring discrepancy between incompatible conditional distributions in the finite discrete case. In the process, we also suggest different ways of defining the most nearly compatible distributions in incompatible cases. Many new divergence measures are discussed along with those that are already known for determining the most nearly compatible joint distribution P. Finally, a comparative study is carried out between all these divergence measures as some examples.  相似文献   

19.
In this article, first, in order to compare X and X w (the weighted version of X with weight function w(·)) according to reversed mean residual life order, we provide an equivalent condition. We then try to provide conditions under which the reversed mean residual life order is preserved by weighted distributions. For this end, we obtain several independent results. Finally, the problem of preservation of increasing reversed mean residual life class under weighting is investigated, as well. Some examples are also given to illustrate the results.  相似文献   

20.
A basic concept for comparing spread among probability distributions is that of dispersive ordering. Let X and Y be two random variables with distribution functions F and G, respectively. Let F −1 and G −1 be their right continuous inverses (quantile functions). We say that Y is less dispersed than X (Y≤ disp X) if G −1(β)−G −1(α)≤F −1(β)−F −1(α), for all 0<α≤β<1. This means that the difference between any two quantiles of G is smaller than the difference between the corresponding quantiles of F. A consequence of Y≤ disp X is that |Y 1Y 2| is stochastically smaller than |X 1X 2| and this in turn implies var(Y)var(X) as well as E[|Y 1Y 2|]≤E[|X 1X 2|], where X 1, X 2 (Y 1, Y 2) are two independent copies of X(Y). In this review paper, we give several examples and applications of dispersive ordering in statistics. Examples include those related to order statistics, spacings, convolution of non-identically distributed random variables and epoch times of non-homogeneous Poisson processes. This work was supported in part by KOSEF through Statistical Research Center for Complex Systems at Seoul National University. Subhash Kochar is thankful to Dr. B. Khaledi for many helpful discussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号