首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《统计学通讯:理论与方法》2012,41(16-17):3079-3093
The paper presents an extension of a new class of multivariate latent growth models (Bianconcini and Cagnone, 2012) to allow for covariate effects on manifest, latent variables and random effects. The new class of models combines: (i) multivariate latent curves that describe the temporal behavior of the responses, and (ii) a factor model that specifies the relationship between manifest and latent variables. Based on the Generalized Linear and Latent Variable Model framework (Bartholomew and Knott, 1999), the response variables are assumed to follow different distributions of the exponential family, with item-specific linear predictors depending on both latent variables and measurement errors. A full maximum likelihood method is used to estimate all the model parameters simultaneously. Data coming from the Data WareHouse of the University of Bologna are used to illustrate the methodology.  相似文献   

2.
In this article, a semiparametric approach is proposed for the regression analysis of panel count data. Panel count data commonly arise in clinical trials and demographical studies where the response variable is the number of multiple recurrences of the event of interest and observation times are not fixed, varying from subject to subject. It is assumed that two processes exist in this data: the first is for a recurrent event and the second is for observation time. Many studies have been done to estimate mean function and regression parameters under the independency between recurrent event process and observation time process. In this article, the same statistical inference is studied, but the situation where these two processes may be related is also considered. The mixed Poisson process is applied for the recurrent event processes, and a frailty intensity function for the observation time is also used, respectively. Simulation studies are conducted to study the performance of the suggested methods. The bladder tumor data are applied to compare previous studie' results.  相似文献   

3.
Interval-censored data arise due to a sequence random examination such that the failure time of interest occurs in an interval. In some medical studies, there exist long-term survivors who can be considered as permanently cured. We consider a mixed model for the uncured group coming from linear transformation models and cured group coming from a logistic regression model. For the inference of parameters, an EM algorithm is developed for a full likelihood approach. To investigate finite sample properties of the proposed method, simulation studies are conducted. The approach is applied to the National Aeronautics and Space Administration’s hypobaric decompression sickness data.  相似文献   

4.
Recently Kundu and Gupta [2010, Modified Sarhan-Balakrishnan singular bivariate distribution, Journal of Statistical Planning and Inference, 140, 526-538] introduced the modified Sarhan-Balakrishnan bivariate distribution and established its several properties. In this paper we provide a multivariate extension of the modified Sarhan-Balakrishnan bivariate distribution. It is a distribution with a singular part. Different ageing and dependence properties of the proposed multivariate distribution have been established. The moment generating function, the product moments can be obtained in terms of infinite series. The multivariate hazard rate has been obtained. We provide the EM algorithm to compute the maximum likelihood estimators and an illustrative example is performed to see the effectiveness of the proposed method.  相似文献   

5.
A familyof partial likelihood logistic models is proposed for clusteredsurvival data that are reported in discrete time and that maybe censored. The possible dependence of individual survival timeswithin clusters is modeled, while distinct clusters are assumedto be independent. Two types of clusters are considered. First,all clusters have the same size and are identically distributed.Second, the clusters may vary in size. In both cases our asymptoticresults apply to a large number of small independent clusters.  相似文献   

6.
This article introduces principal component analysis for multidimensional sparse functional data, utilizing Gaussian basis functions. Our multidimensional model is estimated by maximizing a penalized log-likelihood function, while previous mixed-type models were estimated by maximum likelihood methods for one-dimensional data. The penalized estimation performs well for our multidimensional model, while maximum likelihood methods yield unstable parameter estimates and some of the parameter estimates are infinite. Numerical experiments are conducted to investigate the effectiveness of our method for some types of missing data. The proposed method is applied to handwriting data, which consist of the XY coordinates values in handwritings.  相似文献   

7.
In this article, a simple and efficient weighted method is proposed to improve the estimation efficiency for the linear transformation models with multivariate failure time data. Asymptotic properties of the estimators with a closed-form variance-covariance matrix are established. In addition, a goodness-of-fit test is developed to evaluate the adequacy of the model. The performance of proposed method and the comparison on the efficiency between the proposed method and the working independence method (Lu, 2005) are conducted in finite-sample situation by simulation studies. Finally a real data set from the Busselton Population Health Surveys is illustrated to validate the proposed methodology. The related proofs of the theorems are given in the Appendix.  相似文献   

8.
In classification analysis, the target variable is often in practice defined by an underlying multivariate interval screening scheme. This engenders the problem of properly characterizing the screened populations as well as that of obtaining a classification procedure. Such problems paved the way for the development of yet another linear classification procedure and the incorporation of a class of skew-elliptical distributions for describing evolutions in the populations. To render the linear procedure effective, this article considers derivation and properties of the classification procedure as well as efficient estimation. The procedure is illustrated in applications to real and simulation data.  相似文献   

9.
For the data from multivariate t distributions, it is very hard to make an influence analysis based on the probability density function since its expression is intractable. In this paper, we present a technique for influence analysis based on the mixture distribution and EM algorithm. In fact, the multivariate t distribution can be considered as a particular Gaussian mixture by introducing the weights from the Gamma distribution. We treat the weights as the missing data and develop the influence analysis for the data from multivariate t distributions based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm. Several case-deletion measures are proposed for detecting influential observations from multivariate t distributions. Two numerical examples are given to illustrate our methodology.  相似文献   

10.
Multivariate Poisson regression with covariance structure   总被引:1,自引:0,他引:1  
In recent years the applications of multivariate Poisson models have increased, mainly because of the gradual increase in computer performance. The multivariate Poisson model used in practice is based on a common covariance term for all the pairs of variables. This is rather restrictive and does not allow for modelling the covariance structure of the data in a flexible way. In this paper we propose inference for a multivariate Poisson model with larger structure, i.e. different covariance for each pair of variables. Maximum likelihood estimation, as well as Bayesian estimation methods are proposed. Both are based on a data augmentation scheme that reflects the multivariate reduction derivation of the joint probability function. In order to enlarge the applicability of the model we allow for covariates in the specification of both the mean and the covariance parameters. Extension to models with complete structure with many multi-way covariance terms is discussed. The method is demonstrated by analyzing a real life data set.  相似文献   

11.
In this article, an ECM algorithm is developed to obtain the maximum likelihood estimates of parameters where multivariate skew-normal distribution is used for analyzing longitudinal skewed normal regression data with dropout. A simulation study is performed to investigate the performance of the presented algorithm. Also, the methodology is illustrated through two applications and the results of proposed methodology are compared with ECM under multivariate normal assumption using AIC and BIC criteria. Standard errors of parameter estimates are obtained by asymptotic observed information matrix.  相似文献   

12.
Among the diverse frameworks that have been proposed for regression analysis of angular data, the projected multivariate linear model provides a particularly appealing and tractable methodology. In this model, the observed directional responses are assumed to correspond to the angles formed by latent bivariate normal random vectors that are assumed to depend upon covariates through a linear model. This implies an angular normal distribution for the observed angles, and incorporates a regression structure through a familiar and convenient relationship. In this paper we extend this methodology to accommodate clustered data (e.g., longitudinal or repeated measures data) by formulating a marginal version of the model and basing estimation on an EM‐like algorithm in which correlation among within‐cluster responses is taken into account by incorporating a working correlation matrix into the M step. A sandwich estimator is used for the parameter estimates’ covariance matrix. The methodology is motivated and illustrated using an example involving clustered measurements of microbril angle on loblolly pine (Pinus taeda L.) Simulation studies are presented that evaluate the finite sample properties of the proposed fitting method. In addition, the relationship between within‐cluster correlation on the latent Euclidean vectors and the corresponding correlation structure for the observed angles is explored.  相似文献   

13.
Measurement error models constitute a wide class of models that include linear and nonlinear regression models. They are very useful to model many real-life phenomena, particularly in the medical and biological areas. The great advantage of these models is that, in some sense, they can be represented as mixed effects models, allowing us to implement well-known techniques, like the EM-algorithm for the parameter estimation. In this paper, we consider a class of multivariate measurement error models where the observed response and/or covariate are not fully observed, i.e., the observations are subject to certain threshold values below or above which the measurements are not quantifiable. Consequently, these observations are considered censored. We assume a Student-t distribution for the unobserved true values of the mismeasured covariate and the error term of the model, providing a robust alternative for parameter estimation. Our approach relies on a likelihood-based inference using an EM-type algorithm. The proposed method is illustrated through some simulation studies and the analysis of an AIDS clinical trial dataset.  相似文献   

14.
15.
In this article, we present EM algorithms for performing maximum likelihood estimation for three multivariate skew-normal regression models of considerable practical interest. We also consider the restricted estimation of the parameters of certain important special cases of two models. The methodology developed is applied in the analysis of longitudinal data on dental plaque and cholesterol levels.  相似文献   

16.
The present article discusses alternative regression models and estimation methods for dealing with multivariate fractional response variables. Both conditional mean models, estimable by quasi-maximum likelihood, and fully parametric models (Dirichlet and Dirichlet-multinomial), estimable by maximum likelihood, are considered. A new parameterization is proposed for the parametric models, which accommodates the most common specifications for the conditional mean (e.g., multinomial logit, nested logit, random parameters logit, dogit). The text also discusses at some length the specification analysis of fractional regression models, proposing several tests that can be performed through artificial regressions. Finally, an extensive Monte Carlo study evaluates the finite sample properties of most of the estimators and tests considered.  相似文献   

17.
Semiparametric models: a generalized self-consistency approach   总被引:1,自引:0,他引:1  
Summary. In semiparametric models, the dimension d of the maximum likelihood problem is potentially unlimited. Conventional estimation methods generally behave like O ( d 3). A new O ( d ) estimation procedure is proposed for a large class of semiparametric models. Potentially unlimited dimension is handled in a numerically efficient way through a Nelson–Aalen-like estimator. Discussion of the new method is put in the context of recently developed minorization–maximization algorithms based on surrogate objective functions. The procedure for semiparametric models is used to demonstrate three methods to construct a surrogate objective function: using the difference of two concave functions, the EM way and the new quasi-EM (QEM) approach. The QEM approach is based on a generalization of the EM-like construction of the surrogate objective function so it does not depend on the missing data representation of the model. Like the EM algorithm, the QEM method has a dual interpretation, a result of merging the idea of surrogate maximization with the idea of imputation and self-consistency. The new approach is compared with other possible approaches by using simulations and analysis of real data. The proportional odds model is used as an example throughout the paper.  相似文献   

18.
Maximum likelihood (ML) estimation with spatial econometric models is a long-standing problem that finds application in several areas of economic importance. The problem is particularly challenging in the presence of missing data, since there is an implied dependence between all units, irrespective of whether they are observed or not. Out of the several approaches adopted for ML estimation in this context, that of LeSage and Pace [Models for spatially dependent missing data. J Real Estate Financ Econ. 2004;29(2):233–254] stands out as one of the most commonly used with spatial econometric models due to its ability to scale with the number of units. Here, we review their algorithm, and consider several similar alternatives that are also suitable for large datasets. We compare the methods through an extensive empirical study and conclude that, while the approximate approaches are suitable for large sampling ratios, for small sampling ratios the only reliable algorithms are those that yield exact ML or restricted ML estimates.  相似文献   

19.
Summary.  The Irish college admissions system involves prospective students listing up to 10 courses in order of preference on their application. Places in third-level educational institutions are subsequently offered to the applicants on the basis of both their preferences and their final second-level examination results. The college applications system is a large area of public debate in Ireland. Detractors suggest that the process creates artificial demand for 'high profile' courses, causing applicants to ignore their vocational callings. Supporters argue that the system is impartial and transparent. The Irish college degree applications data from the year 2000 are analysed by using mixture models based on ranked data models to investigate the types of application behaviour that are exhibited by college applicants. The results of this analysis show that applicants form groups according to both the discipline and the geographical location of their course choices. In addition, there is evidence of the suggested 'points race' for high profile courses. Finally, gender emerges as an influential factor when studying course choice behaviour.  相似文献   

20.
We propose a method for estimating parameters in generalized linear models when the outcome variable is missing for some subjects and the missing data mechanism is non-ignorable. We assume throughout that the covariates are fully observed. One possible method for estimating the parameters is maximum likelihood with a non-ignorable missing data model. However, caution must be used when fitting non-ignorable missing data models because certain parameters may be inestimable for some models. Instead of fitting a non-ignorable model, we propose the use of auxiliary information in a likelihood approach to reduce the bias, without having to specify a non-ignorable model. The method is applied to a mental health study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号