首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
马俊海  张如竹 《统计研究》2016,33(5):95-103
针对标准化Libor市场模型(LMM)和Heston随机波动率Libor市场模型(Heston-LMM)的应用局限,首先将SABR代替Heston过程引入标准化Libor市场模型框架,建立非标准化的SABR随机波动率Libor市场模型(SABR-LMM);在此基础上,运用利率上限期权(Cap)、利率互换期权(Swaption)和自适应马尔科夫链蒙特卡罗模拟方法(MCMC)对模型参数进行有效市场校准与模拟估计;最后,针对三个月美元Libor远期利率实际数据,对上述三类Libor市场模型的实际运行效果进行了实证模拟计算与比较分析。研究结论认为,基于模拟利差计算结果,针对短期Libor利率模拟而言,与LMM和Heston -LMM两类模型而言,加入SABR波动项的SABR-LMM模型具有更小的模拟误差,因而具有更好的模拟效果。  相似文献   

2.
The Heston-STAR model is a new class of stochastic volatility models defined by generalizing the Heston model to allow the volatility of the volatility process as well as the correlation between asset log-returns and variance shocks to change across different regimes via smooth transition autoregressive (STAR) functions. The form of the STAR functions is very flexible, much more so than the functions introduced in Jones (J Econom 116:181–224, 2003), and provides the framework for a wide range of stochastic volatility models. A Bayesian inference approach using data augmentation techniques is used for the parameters of our model. We also explore goodness of fit of our Heston-STAR model. Our analysis of the S&P 500 and VIX index demonstrates that the Heston-STAR model is more capable of dealing with large market fluctuations (such as in 2008) compared to the standard Heston model.  相似文献   

3.
The celebrated Black–Scholes model made the assumption of constant volatility but empirical studies on implied volatility and asset dynamics motivated the use of stochastic volatilities. Christoffersen in 2009 showed that multi-factor stochastic volatilities models capture the asset dynamics more realistically. Fouque in 2012 used it to price European options. In 2013, Chiarella and Ziveyi considered Christoffersen’s ideas and introduced an asset dynamics where the two volatilities of the Heston type act separately and independently on the asset price, and using Fourier transform for the asset price process and double Laplace transform for the two volatilities processes, solved a pricing problem for American options. This paper considers the Chiarella and Ziveyi model and parameterizes it so that the volatilities revert to the long-run-mean with reversion rates that mimic fast (for example daily) and slow (for example seasonal) random effects. Applying asymptotic expansion method presented by Fouque in 2012, we make an extensive and detailed derivation of the approximation prices for European options. We also present numerical studies on the behavior and accuracy of our first- and second-order asymptotic expansion formulas.  相似文献   

4.
This article introduces the Markov-Switching Multifractal Duration (MSMD) model by adapting the MSM stochastic volatility model of Calvet and Fisher (2004) to the duration setting. Although the MSMD process is exponential β-mixing as we show in the article, it is capable of generating highly persistent autocorrelation. We study, analytically and by simulation, how this feature of durations generated by the MSMD process propagates to counts and realized volatility. We employ a quasi-maximum likelihood estimator of the MSMD parameters based on the Whittle approximation and establish its strong consistency and asymptotic normality for general MSMD specifications. We show that the Whittle estimation is a computationally simple and fast alternative to maximum likelihood. Finally, we compare the performance of the MSMD model with competing short- and long-memory duration models in an out-of-sample forecasting exercise based on price durations of three major foreign exchange futures contracts. The results of the comparison show that the MSMD and the Long Memory Stochastic Duration model perform similarly and are superior to the short-memory Autoregressive Conditional Duration models.  相似文献   

5.
Multi-asset modelling is of fundamental importance to financial applications such as risk management and portfolio selection. In this article, we propose a multivariate stochastic volatility modelling framework with a parsimonious and interpretable correlation structure. Building on well-established evidence of common volatility factors among individual assets, we consider a multivariate diffusion process with a common-factor structure in the volatility innovations. Upon substituting an observable market proxy for the common volatility factor, we markedly improve the estimation of several model parameters and latent volatilities. The model is applied to a portfolio of several important constituents of the S&P500 in the financial sector, with the VIX index as the common-factor proxy. We find that the prediction intervals for asset forecasts are comparable to those of more complex dependence models, but that option-pricing uncertainty can be greatly reduced by adopting a common-volatility structure. The Canadian Journal of Statistics 48: 36–61; 2020 © 2020 Statistical Society of Canada  相似文献   

6.
This paper deals with the pricing of derivatives written on several underlying assets or factors satisfying a multivariate model with Wishart stochastic volatility matrix. This multivariate stochastic volatility model leads to a closed-form solution for the conditional Laplace transform, and quasi-explicit solutions for derivative prices written on more than one asset or underlying factor. Two examples are presented: (i) a multiasset extension of the stochastic volatility model introduced by Heston (1993), and (ii) a model for credit risk analysis that extends the model of Merton (1974) to a framework with stochastic firm liability, stochastic volatility, and several firms. A bivariate version of the stochastic volatility model is estimated using stock prices and moment conditions derived from the joint unconditional Laplace transform of the stock returns.  相似文献   

7.
This paper presents an efficient Monte Carlo simulation scheme based on the variance reduction methods to evaluate arithmetic average Asian options in the context of the double Heston's stochastic volatility model with jumps. This paper consists of two essential parts. The first part presents a new flexible stochastic volatility model, namely, the double Heston model with jumps. In the second part, by combining two variance reduction procedures via Monte Carlo simulation, we propose an efficient Monte Carlo simulation scheme for pricing arithmetic average Asian options under the double Heston model with jumps. Numerical results illustrate the efficiency of our method.  相似文献   

8.
Risks are usually represented and measured by volatility–covolatility matrices. Wishart processes are models for a dynamic analysis of multivariate risk and describe the evolution of stochastic volatility–covolatility matrices, constrained to be symmetric positive definite. The autoregressive Wishart process (WAR) is the multivariate extension of the Cox, Ingersoll, Ross (CIR) process introduced for scalar stochastic volatility. As a CIR process it allows for closed-form solutions for a number of financial problems, such as term structure of T-bonds and corporate bonds, derivative pricing in a multivariate stochastic volatility model, and the structural model for credit risk. Moreover, the Wishart dynamics are very flexible and are serious competitors for less structural multivariate ARCH models.  相似文献   

9.
ARFIMAX models are applied in estimating the intra-day realized volatility of the CAC40 and DAX30 indices. Volatility clustering and asymmetry characterize the logarithmic realized volatility of both the indices. The ARFIMAX model with time-varying conditional heteroskedasticity is the best performing specification and, at least in the case of DAX30, provides statistically superior next trading day's realized volatility forecasts.  相似文献   

10.
Summary.  We develop Markov chain Monte Carlo methodology for Bayesian inference for non-Gaussian Ornstein–Uhlenbeck stochastic volatility processes. The approach introduced involves expressing the unobserved stochastic volatility process in terms of a suitable marked Poisson process. We introduce two specific classes of Metropolis–Hastings algorithms which correspond to different ways of jointly parameterizing the marked point process and the model parameters. The performance of the methods is investigated for different types of simulated data. The approach is extended to consider the case where the volatility process is expressed as a superposition of Ornstein–Uhlenbeck processes. We apply our methodology to the US dollar–Deutschmark exchange rate.  相似文献   

11.
We characterize joint tails and tail dependence for a class of stochastic volatility processes. We derive the exact joint tail shape of multivariate stochastic volatility with innovations that have a regularly varying distribution tail. This is used to give four new characterizations of tail dependence. In three cases tail dependence is a non-trivial function of linear volatility memory parametrically represented by tail scales, while tail power indices do not provide any relevant dependence information. Although tail dependence is associated with linear volatility memory, tail dependence itself is nonlinear. In the fourth case a linear function of tail events and exceedances is linearly independent. Tail dependence falls in a class that implies the celebrated Hill (1975) tail index estimator is asymptotically normal, while linear independence of nonlinear tail arrays ensures the asymptotic variance is the same as the iid case. We illustrate the latter finding by simulation.  相似文献   

12.
In this paper we present a parsimonious multivariate model for exchange rate volatilities based on logarithmic high–low ranges of daily exchange rates. The multivariate stochastic volatility model decomposes the log range of each exchange rate into two independent latent factors, which could be interpreted as the underlying currency specific components. Owing to the empirical normality of the logarithmic range measure the model can be estimated conveniently with the standard Kalman filter methodology. Our results show that our model fits the exchange rate data quite well. Exchange rate news seems to be currency specific and allows identification of currency contributions to both exchange rate levels and exchange rate volatilities.  相似文献   

13.
Abstract. We investigate simulation methodology for Bayesian inference in Lévy‐driven stochastic volatility (SV) models. Typically, Bayesian inference from such models is performed using Markov chain Monte Carlo (MCMC); this is often a challenging task. Sequential Monte Carlo (SMC) samplers are methods that can improve over MCMC; however, there are many user‐set parameters to specify. We develop a fully automated SMC algorithm, which substantially improves over the standard MCMC methods in the literature. To illustrate our methodology, we look at a model comprised of a Heston model with an independent, additive, variance gamma process in the returns equation. The driving gamma process can capture the stylized behaviour of many financial time series and a discretized version, fit in a Bayesian manner, has been found to be very useful for modelling equity data. We demonstrate that it is possible to draw exact inference, in the sense of no time‐discretization error, from the Bayesian SV model.  相似文献   

14.
An exact maximum likelihood method is developed for the estimation of parameters in a non-Gaussian nonlinear density function that depends on a latent Gaussian dynamic process with long-memory properties. Our method relies on the method of importance sampling and on a linear Gaussian approximating model from which the latent process can be simulated. Given the presence of a latent long-memory process, we require a modification of the importance sampling technique. In particular, the long-memory process needs to be approximated by a finite dynamic linear process. Two possible approximations are discussed and are compared with each other. We show that an autoregression obtained from minimizing mean squared prediction errors leads to an effective and feasible method. In our empirical study, we analyze ten daily log-return series from the S&P 500 stock index by univariate and multivariate long-memory stochastic volatility models. We compare the in-sample and out-of-sample performance of a number of models within the class of long-memory stochastic volatility models.  相似文献   

15.
We consider stochastic volatility models that are defined by an Ornstein–Uhlenbeck (OU)-Gamma time change. These models are most suitable for modeling financial time series and follow the general framework of the popular non-Gaussian OU models of Barndorff-Nielsen and Shephard. One current problem of these otherwise attractive nontrivial models is, in general, the unavailability of a tractable likelihood-based statistical analysis for the returns of financial assets, which requires the ability to sample from a nontrivial joint distribution. We show that an OU process driven by an infinite activity Gamma process, which is an OU-Gamma process, exhibits unique features, which allows one to explicitly describe and exactly sample from relevant joint distributions. This is a consequence of the OU structure and the calculus of Gamma and Dirichlet processes. We develop a particle marginal Metropolis–Hastings algorithm for this type of continuous-time stochastic volatility models and check its performance using simulated data. For illustration we finally fit the model to S&P500 index data.  相似文献   

16.
A stochastic volatility in mean model with correlated errors using the symmetrical class of scale mixtures of normal distributions is introduced in this article. The scale mixture of normal distributions is an attractive class of symmetric distributions that includes the normal, Student-t, slash and contaminated normal distributions as special cases, providing a robust alternative to estimation in stochastic volatility in mean models in the absence of normality. Using a Bayesian paradigm, an efficient method based on Markov chain Monte Carlo (MCMC) is developed for parameter estimation. The methods developed are applied to analyze daily stock return data from the São Paulo Stock, Mercantile & Futures Exchange index (IBOVESPA). The Bayesian predictive information criteria (BPIC) and the logarithm of the marginal likelihood are used as model selection criteria. The results reveal that the stochastic volatility in mean model with correlated errors and slash distribution provides a significant improvement in model fit for the IBOVESPA data over the usual normal model.  相似文献   

17.
We statistically analyze a multivariate Heath-Jarrow-Morton diffusion model with stochastic volatility. The volatility process of the first factor is left totally unspecified while the volatility of the second factor is the product of an unknown process and an exponential function of time to maturity. This exponential term includes some real parameter measuring the rate of increase of the second factor as time goes to maturity. From historical data, we efficiently estimate the time to maturity parameter in the sense of constructing an estimator that achieves an optimal information bound in a semiparametric setting. We also nonparametrically identify the paths of the volatility processes and achieve minimax bounds. We address the problem of degeneracy that occurs when the dimension of the process is greater than two, and give in particular optimal limit theorems under suitable regularity assumptions on the drift process. We consistently analyze the numerical behavior of our estimators on simulated and real datasets of prices of forward contracts on electricity markets.  相似文献   

18.
This paper presents an empirical analysis of stochastic features of volatility in the Japanese stock price index, or TOPIX, using high-frequency data sampled every 5 min. The process of TOPIX is modeled by a stochastic differential equation with the time-homogeneous drift and diffusion coefficients. To avoid the risk of misspecification for the volatility function, which is defined by the squared diffusion coefficient, the local polynomial model is applied to the data, and then produced the estimates of the volatility function together with their confidence intervals. The result of the estimation suggests that the volatility function shows similar patterns for one period, but drastically changes for another.  相似文献   

19.
This article provides an empirical investigation of the risk-neutral variance process and the market price of variance risk implied in the foreign-currency options market. There are three principal contributions. First, the parameters of Heston's mean-reverting square-root stochastic volatility model are estimated using dollar/mark option prices from 1987 to 1992. Second, it is shown that these implied parameters can be combined with historical moments of the dollar/mark exchange rate to deduce an estimate of the market price of variance risk. These estimates are found to be nonzero, time varying, and of sufficient magnitude to imply that the compensation for variance risk is a significant component of the risk premia in the currency market. Finally, the out-of-sample test suggests that the historical variance and the Hull and White implied variance contain no more information than that imbedded in the Heston implied variance.  相似文献   

20.
In this paper we present a parsimonious multivariate model for exchange rate volatilities based on logarithmic high-low ranges of daily exchange rates. The multivariate stochastic volatility model decomposes the log range of each exchange rate into two independent latent factors, which could be interpreted as the underlying currency specific components. Owing to the empirical normality of the logarithmic range measure the model can be estimated conveniently with the standard Kalman filter methodology. Our results show that our model fits the exchange rate data quite well. Exchange rate news seems to be currency specific and allows identification of currency contributions to both exchange rate levels and exchange rate volatilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号