首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Robust control charts are useful in statistical process control (SPC) when there is limited knowledge about the underlying process distribution, especially for multivariate observations. This article develops a new robust and self-starting multivariate procedure based on multivariate Smirnov test (MST), which integrates a multivariate two-sample goodness-of-fit (GOF) test based on multivariate empirical distribution function (MEDF) and the change-point model. As expected, simulation results show that our proposed control chart is robust to nonnormally distributed data, and moreover, it is efficient in detecting process shifts, especially large shifts, which is one of the main drawbacks of most robust control charts in the literature. As it avoids the need for a lengthy data-gathering step, the proposed chart is particularly useful in start-up or short-run situations. Comparison results and a real data example show that our proposed chart has great potential for application.  相似文献   

2.
Traditional multivariate quality control charts are based on independent observations. In this paper, we explain how to extend univariate residual charts to multivariate cases and how to combine the traditional statistical process control (SPC) approaches to monitor changes in process variability in a dynamic environment. We propose using Alt's (1984) W chart on vector autoregressive (VAR) residuals to monitor the variability for multivariate processes in the presence of autocorrelation. We study examples jointly using the Hotelling T2 chart on VAR residuals, the W chart, and the Portmanteau test to diagnose the types of shift in process parameters.  相似文献   

3.
Statistical process control of multi-attribute count data has received much attention with modern data-acquisition equipment and online computers. The multivariate Poisson distribution is often used to monitor multivariate attributes count data. However, little work has been done so far on under- or over-dispersed multivariate count data, which is common in many industrial processes, with positive or negative correlation. In this study, a Shewhart-type multivariate control chart is constructed to monitor such kind of data, namely the multivariate COM-Poisson (MCP) chart, based on the MCP distribution. The performance of the MCP chart is evaluated by the average run length in simulation. The proposed chart generalizes some existing multivariate attribute charts as its special cases. A real-life bivariate process and a simulated trivariate Poisson process are used to illustrate the application of the MCP chart.  相似文献   

4.
Nonparametric control charts are useful in statistical process control (SPC) when there is a lack of or limited knowledge about the underlying process distribution, especially when the process measurement is multivariate. This article develops a new multivariate SPC methodology for monitoring location parameter based on adapting a well-known nonparametric method, empirical likelihood (EL), to on-line sequential monitoring. The weighted version of EL ratio test is used to formulate the charting statistic by incorporating the exponentially weighted moving average control (EWMA) scheme, which results in a nonparametric counterpart of the classical multivariate EWMA (MEWMA). Some theoretical and numerical studies show that benefiting from using EL, the proposed chart possesses some favorable features. First, it is a data-driven scheme and thus is more robust to various multivariate non-normal data than the MEWMA chart under the in-control (IC) situation. Second, it is transformation-invariant and avoids the estimation of covariance matrix from the historical data by studentizing internally, and hence its IC performance is less deteriorated when the number of reference sample is small. Third, in comparison with the existing approaches, it is more efficient in detecting small and moderate shifts for multivariate non-normal process.  相似文献   

5.
In this paper, a multivariate Bayesian variable sampling interval (VSI) control chart for the economic design and optimization of statistical parameters is designed. Based on the VSI sampling strategy of a multivariate Bayesian control chart with dual control limits, the optimal expected cost function is constructed. The proposed model allows the determination of the scheme parameters that minimize the expected cost per time of the process. The effectiveness of the Bayesian VSI chart is estimated through economic comparisons with the Bayesian fixed sampling interval and the Hotelling's T2 chart. This study is an in-depth study on a Bayesian multivariate control chart with variable parameter. Furthermore, it is shown that significant cost improvement may be realized through the new model.  相似文献   

6.
Since the product quality of many industrial processes depends upon more than one dependent variable or attribute, they are either multivariate or multi-attribute in nature. Although multivariate statistical process control is receiving increased attention in the literature, little work has been done to deal with multi-attribute processes. In this article, we develop a new methodology to monitor multi-attribute processes. To do this, first we transform multi-attribute data in a way that their marginal probability distributions have almost zero skewness. Then, we estimate the transformed covariance matrix and apply the well-known T 2 control chart. In order to illustrate the proposed method and evaluate its performance, we use two simulation experiments and compare the results with the ones from both MNP chart and the χ2 control chart.  相似文献   

7.
The T 2 control chart is widely adopted in multivariate statistical process control. However, when dealing with asymmetrical or multimodal distributions using the traditional T 2 control chart, some points with relatively high occurrence possibility might be excluded, while some points with relatively low occurrence possibility might be accepted. Motived by the thought of the highest posterior density credible region, we develop a control chart based on the highest possibility region to solve this problem. It is shown that the proposed multivariate control chart will not only meet the false alarm requirement, but also ensure that all the in-control points are with relatively high occurrence possibility. The advantages and effectiveness of the proposed control chart are demonstrated by some numerical examples in the end.  相似文献   

8.
Change point estimation procedures simplify the efforts to search for and identify special causes in multivariate statistical process monitoring. After a signal is generated by the simultaneously used control charts or a single control chart, add-on change point procedure estimates the time of the change. In this study, multivariate joint change point estimation performance for simultaneous monitoring of both location and dispersion is compared under the assumption that various single charts are used to monitor the process. The change detection performance for several structural changes for the mean vector and covariance matrix is also discussed. It is concluded that choice of the control chart to obtain a signal may affect the change point detection performance.  相似文献   

9.
In modern quality control, it is becoming common to simultaneously monitor several quality characteristics of a process with rapid evolving data-acquisition technology. When the multivariate process distribution is unknown and only a set of in-control data is available, the bootstrap technique can be used to adjust the constant limit of the multivariate cumulative sum (MCUSUM) control chart. To further improve the performance of the control chart, we extend the constant control limit to a sequence of dynamic control limits which are determined by the conditional distribution of the charting statistics given the sprint length. Simulation results show that the novel control chart with dynamic control limits offers a better ARL performance, compared with the traditional MCUSUM control chart. Despite it, the proposed control chart is considerably computer-intensive. This leads to the development of a more flexible control chart which uses a continuous function of the sprint length as the control limit sequences. More importantly, the control chart is easy to implement and can reduce the computational time significantly. A white wine data illustrates that the novel control chart performs quite well in applications.  相似文献   

10.
Control charts using repetitive group sampling have attracted a great deal of attention during the last few years. In the present article, we attempt to develop a control chart for the multivariate Poisson distribution using the repetitive group sampling scheme. In the proposed control chart, the monitoring statistic from the multivariate Poisson distribution has been used for the quick detection of the deteriorated process to avoid losses. The control coefficients have been estimated using the specified in-control average run lengths. The procedure of the proposed control chart has been explained by using the real-world example and a simulated data set. It has been observed that the proposed control chart is an efficient development for the quick detection of the nonrandom change in the manufacturing process.  相似文献   

11.
ABSTRACT

In recent years, effective monitoring of data quality has increasingly attracted attention of researchers in the area of statistical process control. Among the relevant research on this topic, none used multivariate methods to control the multidimensional data quality process, but instead relied on multiple univariate control charts. Based on a novel one-sided multivariate exponentially weighted moving average (MEWMA) chart, we propose a conditional false discovery rate-adjusted scheme to on-line monitor the data quality of high-dimensional data streams. With thousands of input data streams, the average run length loses its usefulness because one will likely have out-of-control signals at each time period. Hence, we first control the percentage of signals that are false alarms. Then, we compare the power of the proposed MEWMA scheme with that of two alternative methods. Compared with two competitors, numerical results show that the proposed MEWMA scheme has higher average power.  相似文献   

12.
Statistical process control tools have been used routinely to improve process capabilities through reliable on-line monitoring and diagnostic processes. In the present paper, we propose a novel multivariate control chart that integrates a support vector machine (SVM) algorithm, a bootstrap method, and a control chart technique to improve multivariate process monitoring. The proposed chart uses as the monitoring statistic the predicted probability of class (PoC) values from an SVM algorithm. The control limits of SVM-PoC charts are obtained by a bootstrap approach. A simulation study was conducted to evaluate the performance of the proposed SVM–PoC chart and to compare it with other data mining-based control charts and Hotelling's T 2 control charts under various scenarios. The results showed that the proposed SVM–PoC charts outperformed other multivariate control charts in nonnormal situations. Further, we developed an exponential weighed moving average version of the SVM–PoC charts for increasing sensitivity to small shifts.  相似文献   

13.
A variable sampling interval (VSI) feature is introduced to the multivariate synthetic generalized sample variance |S| control chart. This multivariate synthetic control chart is a combination of the |S| sub-chart and the conforming run length sub-chart. The VSI feature enhances the performance of the multivariate synthetic control chart. The comparative results show that the VSI multivariate synthetic control chart performs better than other types of multivariate control charts for detecting shifts in the covariance matrix of a multivariate normally distributed process. An example is given to illustrate the operation of the VSI multivariate synthetic chart.  相似文献   

14.
A multivariate synthetic exponentially weighted moving average (MSEWMA) control chart is presented in this study. The MSEWMA control chart consists of a multivariate exponentially weighted moving average (MEWMA) control chart and a conforming run length control chart. The average run length of the MSEWMA control chart is obtained using a Markov chain approach. From the numerical comparisons, it is shown that the MSEWMA control chart is more efficient than the multivariate synthetic T 2 control chart and the MEWMA control chart for detecting shifts in the process mean vector.  相似文献   

15.
Principal components are useful for multivariate process control. Typically, the principal component variables are often selected to summarize the variation in the process data. We provide an analysis to select the principal component variables to be included in a multivariate control chart that incorporates the unique aspects of the process control problem (rather than using traditional principal component guidelines).  相似文献   

16.
ABSTRACT

Quality control charts have been widely recognized as a potentially powerful statistical process monitoring tool in statistical process control because of their superior ability in detecting shifts in the process parameters. Recently, auxiliary-information-based control charts have been proposed and shown to have excellent speed in detecting process shifts than those based without it. In this paper, we design a new synthetic control chart that is based on a statistic that utilizes information from both the study and auxiliary variables. The proposed synthetic chart encompasses the classical synthetic chart. The construction, optimal design, run length profiles, and the performance evaluation of the new chart are discussed in detail. It turns out that the proposed synthetic chart performs uniformly better than the classical synthetic chart when detecting different kinds of shifts in the process mean under both zero-state and steady-state run length performances. Moreover, with reasonable assumptions, the proposed chart also surpasses the exponentially weighted moving average control chart. An application with a simulated data set is also presented to explain the implementation of the proposed control chart.  相似文献   

17.
Standard multivariate control charts usually employ fixed sample sizes at equal sampling intervals to monitor a process. In this study, a multivariate exponential weighted moving average (MEWMA) chart with adaptive sample sizes is investigated. Performance measure of the adaptive-sample-size MEWMA chart is obtained through a Markov chain approach. The performance of the adaptive-sample-size MEWMA chart is compared with the fixed-sample-size control chart in terms of steady-state average run length for different magnitude of shifts in the process mean. It is shown that the adaptive-sample-size chart is more efficient than the fixed-sample-size MEWMA control chart in detecting shifts in the process mean.  相似文献   

18.
A multivariate change point control chart based on data depth (CPDP) is considered for detecting shifts in either the mean vector, the covariance matrix, or both of the processes for Phase I. The proposed chart is preferable from a robustness point of view, has attractive detection performance, and can be especially useful in Phase I analysis setting, where there is limited information about the underlying process. Comparison results and an illustrative example show that our CPDP chart has great potential for Phase I analysis of multivariate individual observations. The application of CPDP chart is illustrated in a real data example.  相似文献   

19.
This paper discusses the development of a multivariate control charting technique for short-run autocorrelated data manufacturing environment. The proposed approach is a combination of the multivariate residual charts for autocorrelated data and the multivariate transformation technique for i.i.d. process observations of short lengths. The proposed approach consists in fitting adequate multivariate time-series model of various process outputs and computes the residuals, transforming them into standard normal N(0, 1) data and then using standardized data as inputs to plot conventional univariate i.i.d. control charts. The objective for applying multivariate finite horizon techniques for autocorrelated processes is to allow continuous process monitoring, since all process outputs are controlled trough the use of a single control chart with constant control limits. Throughout simulated examples, it is shown that the proposed short-run process monitoring technique provides approximately similar shifts detection properties as VAR residual charts.  相似文献   

20.

The design parameters of the multivariate exponentially weighted moving average (MEWMA) control chart may be chosen according to economic and/or statistical considerations. The economic model proposed for the design of the'MEWMA chart assumes a Markovian process failure mechanism following an exponential distribution. We'assess the sensitivity of the resulting economic design for the MEWMA to deviations from this assumption. In particular, the generalization, from an exponential to a Weibull distribution of process failure, is used to study the selection of MEWMA chart parameters given process cost and time information. We conclude that the quality of the resulting design (in terms of expected cost) is not substantially affected by mis-specification of the distribution of process failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号