首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Functional data are being observed frequently in many scientific fields, and therefore most of the standard statistical methods are being adapted for functional data. The multivariate analysis of variance problem for functional data is considered. It seems to be of practical interest similarly as the one-way analysis of variance for such data. For the MANOVA problem for multivariate functional data, we propose permutation tests based on a basis function representation and tests based on random projections. Their performance is examined in comprehensive simulation studies, which provide an idea of the size control and power of the tests and identify differences between them. The simulation experiments are based on artificial data and real labeled multivariate time series data found in the literature. The results suggest that the studied testing procedures can detect small differences between vectors of curves even with small sample sizes. Illustrative real data examples of the use of the proposed testing procedures in practice are also presented.  相似文献   

2.
The standard methods for analyzing data arising from a ‘thorough QT/QTc study’ are based on multivariate normal models with common variance structure for both drug and placebo. Such modeling assumptions may be violated and when the sample sizes are small, the statistical inference can be sensitive to such stringent assumptions. This article proposes a flexible class of parametric models to address the above‐mentioned limitations of the currently used models. A Bayesian methodology is used for data analysis and models are compared using the deviance information criteria. Superior performance of the proposed models over the current models is illustrated through a real dataset obtained from a GlaxoSmithKline (GSK) conducted ‘thorough QT/QTc study’. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The need to establish the independence of the sample mean and the sample variance in sampling from a normal population arises early in a course in statistics. For the result is an essential ingredient in the derivation of the Student-t distribution for statistical inference. Often this need arises before the tools, notably multivariate methods, for a rigorous proof are available. Occasionally one will find attempts to derive this result using only bivariate assumptions. A recent article in this journal, as well as some current textbooks, offer such a proof. In all cases there are serious questions about the validity of the proofs.  相似文献   

4.
Most multivariate statistical techniques rely on the assumption of multivariate normality. The effects of nonnormality on multivariate tests are assumed to be negligible when variance–covariance matrices and sample sizes are equal. Therefore, in practice, investigators usually do not attempt to assess multivariate normality. In this simulation study, the effects of skewed and leptokurtic multivariate data on the Type I error and power of Hotelling's T 2 were examined by manipulating distribution, sample size, and variance–covariance matrix. The empirical Type I error rate and power of Hotelling's T 2 were calculated before and after the application of generalized Box–Cox transformation. The findings demonstrated that even when variance–covariance matrices and sample sizes are equal, small to moderate changes in power still can be observed.  相似文献   

5.
Analysis of covariance in designed experiments has a long history dating back to the middle of the twentieth century. Given the popularity of Bayesian approaches to statistical modelling and inference, it is somewhat surprising that there is so little literature on the application of Bayesian methods in this context. This paper proposes methods based on a recent formulation of the problem in terms of a multivariate variance components model which allows for a conjugate Bayesian analysis of balanced randomized block experiments with concomitant information. The analysis is complicated by a linear constraint involving two covariance matrices. Two solutions are proposed and implemented using Markov chain Monte Carlo methods.  相似文献   

6.
The traditional and readily available multivariate analysis of variance (MANOVA) tests such as Wilks' Lambda and the Pillai–Bartlett trace start to suffer from low power as the number of variables approaches the sample size. Moreover, when the number of variables exceeds the number of available observations, these statistics are not available for use. Ridge regularisation of the covariance matrix has been proposed to allow the use of MANOVA in high‐dimensional situations and to increase its power when the sample size approaches the number of variables. In this paper two forms of ridge regression are compared to each other and to a novel approach based on lasso regularisation, as well as to more traditional approaches based on principal components and the Moore‐Penrose generalised inverse. The performance of the different methods is explored via an extensive simulation study. All the regularised methods perform well; the best method varies across the different scenarios, with margins of victory being relatively modest. We examine a data set of soil compaction profiles at various positions relative to a ridgetop, and illustrate how our results can be used to inform the selection of a regularisation method.  相似文献   

7.
The pretest–posttest design is widely used to investigate the effect of an experimental treatment in biomedical research. The treatment effect may be assessed using analysis of variance (ANOVA) or analysis of covariance (ANCOVA). The normality assumption for parametric ANOVA and ANCOVA may be violated due to outliers and skewness of data. Nonparametric methods, robust statistics, and data transformation may be used to address the nonnormality issue. However, there is no simultaneous comparison for the four statistical approaches in terms of empirical type I error probability and statistical power. We studied 13 ANOVA and ANCOVA models based on parametric approach, rank and normal score-based nonparametric approach, Huber M-estimation, and Box–Cox transformation using normal data with and without outliers and lognormal data. We found that ANCOVA models preserve the nominal significance level better and are more powerful than their ANOVA counterparts when the dependent variable and covariate are correlated. Huber M-estimation is the most liberal method. Nonparametric ANCOVA, especially ANCOVA based on normal score transformation, preserves the nominal significance level, has good statistical power, and is robust for data distribution.  相似文献   

8.
Medical images and genetic assays typically generate data with more variables than subjects. Scientists may use a two-step approach for testing hypotheses about Gaussian mean vectors. In the first step, principal components analysis (PCA) selects a set of sample components fewer in number than the sample size. In the second step, applying classical multivariate analysis of variance (MANOVA) methods to the reduced set of variables provides the desired hypothesis tests. Simulation results presented here indicate that success of the PCA in the first step requires nearly all variation to occur in population components far fewer in number than the number of subjects. In the second step, multivariate tests fail to attain reasonable power except in restrictive, favorable cases. The results encourage using other approaches discussed in the article to provide dependable hypothesis testing with high dimension, low sample size data (HDLSS).  相似文献   

9.

Conventionally, it was shown that the underlying distribution is normal if and only if the sample mean and sample variance from a random sample are independent. This paper focusses on the normal population characterization theorem by showing that, if the joint distribution of a skew normal sample follows certain multivariate skew normal distribution, the sample mean and sample variance are still independent.  相似文献   

10.
In this paper we explore statistical properties of some difference-based approaches to estimate an error variance for small sample based on nonparametric regression which satisfies Lipschitz condition. Our study is motivated by Tong and Wang (2005), who estimated error variance using a least squares approach. They considered the error variance as the intercept in a simple linear regression which was obtained from the expectation of their lag-k Rice estimator. Their variance estimators are highly dependent on the setting of a regressor and weight of their simple linear regression. Although this regressor and weight can be varied based on the characteristic of an unknown nonparametric mean function, Tong and Wang (2005) have used a fixed regressor and weight in a large sample and gave no indication of how to determine the regressor and the weight. In this paper, we propose a new approach via local quadratic approximation to determine this regressor and weight. Using our proposed regressor and weight, we estimate the error variance as the intercept of simple linear regression using both ordinary least squares and weighted least squares. Our approach applies to both small and large samples, while most existing difference-based methods are appropriate solely for large samples. We compare the performance of our approach with other existing approaches using extensive simulation study. The advantage of our approach is demonstrated using a real data set.  相似文献   

11.
This paper focuses on the distribution of the skew normal sample mean. For a random sample drawn from a skew normal population, we derive the density function and the moment generating function of the sample mean. The density function derived can be used for statistical inference on the disease occurrence time of twins in epidemiology, in which the skew normal model plays a key role.  相似文献   

12.
A parametric modelling for interval data is proposed, assuming a multivariate Normal or Skew-Normal distribution for the midpoints and log-ranges of the interval variables. The intrinsic nature of the interval variables leads to special structures of the variance–covariance matrix, which is represented by five different possible configurations. Maximum likelihood estimation for both models under all considered configurations is studied. The proposed modelling is then considered in the context of analysis of variance and multivariate analysis of variance testing. To access the behaviour of the proposed methodology, a simulation study is performed. The results show that, for medium or large sample sizes, tests have good power and their true significance level approaches nominal levels when the constraints assumed for the model are respected; however, for small samples, sizes close to nominal levels cannot be guaranteed. Applications to Chinese meteorological data in three different regions and to credit card usage variables for different card designations, illustrate the proposed methodology.  相似文献   

13.
Different longitudinal study designs require different statistical analysis methods and different methods of sample size determination. Statistical power analysis is a flexible approach to sample size determination for longitudinal studies. However, different power analyses are required for different statistical tests which arises from the difference between different statistical methods. In this paper, the simulation-based power calculations of F-tests with Containment, Kenward-Roger or Satterthwaite approximation of degrees of freedom are examined for sample size determination in the context of a special case of linear mixed models (LMMs), which is frequently used in the analysis of longitudinal data. Essentially, the roles of some factors, such as variance–covariance structure of random effects [unstructured UN or factor analytic FA0], autocorrelation structure among errors over time [independent IND, first-order autoregressive AR1 or first-order moving average MA1], parameter estimation methods [maximum likelihood ML and restricted maximum likelihood REML] and iterative algorithms [ridge-stabilized Newton-Raphson and Quasi-Newton] on statistical power of approximate F-tests in the LMM are examined together, which has not been considered previously. The greatest factor affecting statistical power is found to be the variance–covariance structure of random effects in the LMM. It appears that the simulation-based analysis in this study gives an interesting insight into statistical power of approximate F-tests for fixed effects in LMMs for longitudinal data.  相似文献   

14.
The growth curve model introduced by potthoff and Roy 1964 is a general statistical model which includes as special cases regression models and both univariate and multivariate analysis of variance models. The methods currently available for estimating the parameters of this model assume an underlying multivariate normal distribution of errors. In this paper, we discuss tw robst estimators of the growth curve loction and scatter parameters based upon M-estimation techniques and the work done by maronna 1976. The asymptotic distribution of these robust estimators are discussed and a numerical example given.  相似文献   

15.
The studentized range test is a widely applied statistical procedure to compare several normal means within the analysis of variance. However, up to now no general methodology is available to perform the all-pair comparisons precisely, such as the computation of p-values or quantiles in the simple unbalanced one-way layout. Instead, a variety of approximations have been proposed in the past. This article focuses on exact computations of simultaneous confidence intervals and exact sample size determinations for all-pair comparisons in the analysis of variance involving arbitrary variance-covariance matrices. General power expressions in closed form are developed and numerical issues concerning the arising multivariate central and noncentral t-distributions are discussed. An application to the usual fixed effects analysis of covariance illustrates the use of the obtained results.  相似文献   

16.
A data base that provides a multivariate statistical history for each of a number of individual entities is called a pooled cross-sectional and time series data base in the econometrics literature. In marketing and survey literature the terms panel data or longitudinal data are often used. In management science a convenient term might be management data base. Such a data base provides a particularly rich environment for statistical analysis. This article reviews methods for estimating multivariate relationships particular to each individual entity and for summarizing these relationships for a number of individuals. Inference to a larger population when the data base is viewed as a sample is also considered.  相似文献   

17.
Multivariate hypothesis testing in studies of vegetation is likely to be hindered by unrealistic assumptions when based on conventional statistical methods. This can be overcome by randomization tests. In this paper, the accuracy and power of a MANOVA randomization test are evaluated for one and two factors with interaction with simulated data from three distributions. The randomization test is based on the partitioning of sum of squares computed from Euclidean distances. In one-factor designs, sample size and variance inequality were evaluated. The results showed a high level of accuracy. The power curve was higher with normal distribution, lower with uniform, intermediate with lognormal and was sensitive to variance inequality. In two-factor designs, three methods of permutations and two statistics were compared. The results showed that permutation of the residuals with F pseudo is accurate and can give good power for testing the interaction and restricted permutation for testing main factors.  相似文献   

18.
Exact confidence intervals for variances rely on normal distribution assumptions. Alternatively, large-sample confidence intervals for the variance can be attained if one estimates the kurtosis of the underlying distribution. The method used to estimate the kurtosis has a direct impact on the performance of the interval and thus the quality of statistical inferences. In this paper the author considers a number of kurtosis estimators combined with large-sample theory to construct approximate confidence intervals for the variance. In addition, a nonparametric bootstrap resampling procedure is used to build bootstrap confidence intervals for the variance. Simulated coverage probabilities using different confidence interval methods are computed for a variety of sample sizes and distributions. A modification to a conventional estimator of the kurtosis, in conjunction with adjustments to the mean and variance of the asymptotic distribution of a function of the sample variance, improves the resulting coverage values for leptokurtically distributed populations.  相似文献   

19.
如何解决网络访问固定样本调查的统计推断问题,是大数据背景下网络调查面临的严重挑战。针对此问题,提出将网络访问固定样本的调查样本与概率样本结合,利用倾向得分逆加权和加权组调整构造伪权数来估计目标总体,进一步采用基于有放回概率抽样的Vwr方法、基于广义回归估计的Vgreg方法与Jackknife方法来估计方差,并比较不同方法估计的效果。研究表明:无论概率样本的样本量较大还是较小,本研究所提出的总体均值估计方法效果较好,并且在方差估计中Jackknife方法的估计效果最好。  相似文献   

20.
The statistical problems associated with estimating the mean responding cell density in the limiting dilution assay (LDA) have largely been ignored. We evaluate techniques for analyzing LDA data from multiple biological samples, assumed to follow either a normal or gamma distribution. Simulated data is used to evaluate the performance of an unweighted mean, a log transform, and a weighted mean procedure described by Taswell (1987). In general, an unweighted mean with jackknife estimates will produce satisfactory results. In some cases, a log transform is more appropriate. Taswell's weighted mean algorithm is unable to estimate an accurate variance. We also show that methods which pool samples, or LDA data, are invalid. In addition, we show that optimization of the variance in multiple sample LDA's is dependent on the estimator, the between-organism variance, the replicate well size, and the numberof biological samples. However, this optimization is generally achieved by maximizing biological samples at the expense of well replicates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号