首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In this paper, we construct two classes of t×n,s e -disjunct matrix with subspaces in orthogonal space \mathbbFq(2n+1)\mathbb{F}_{q}^{(2\nu+1)} of characteristic 2 and exhibit their disjunct properties. We also prove that the test efficiency t/n of constructions II is smaller than that of D’yachkov et al. (J. Comput. Biol. 12:1129–1136, 2005).  相似文献   

2.
Let \mathbbF(2n+d)q2\mathbb{F}^{(2\nu+\delta)}_{q^{2}} be a (2ν+δ)-dimensional unitary space of \mathbbFq2\mathbb{F}_{q^{2}} , where δ=0 or 1. In this paper we construct a family of inclusion matrices associated with subspaces of \mathbbF(2n+d)q2\mathbb{F}^{(2\nu+\delta)}_{q^{2}} , and exhibit its disjunct property. Moreover, we compare the ratio efficiency of this construction with others, and find it smaller under some conditions.  相似文献   

3.
Let be a complete m-partite graph with partite sets of sizes n 1,n 2,…,n m . A complete m-partite graph is balanced if each partite set has n vertices. We denote this complete m-partite graph by K m(n). In this paper, we completely solve the problem of finding a maximum packing of the balanced complete m-partite graph K m(n), m odd, with edge-disjoint 5-cycles and we explicitly give the minimum leaves. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday. Research of M.-H.W. was supported by NSC 93-2115-M-264-001.  相似文献   

4.
Finding an anti-risk path between two nodes in undirected graphs   总被引:1,自引:0,他引:1  
Given a weighted graph G=(V,E) with a source s and a destination t, a traveler has to go from s to t. However, some of the edges may be blocked at certain times, and the traveler only observes that upon reaching an adjacent site of the blocked edge. Let ℘={P G (s,t)} be the set of all paths from s to t. The risk of a path is defined as the longest travel under the assumption that any edge of the path may be blocked. The paper will propose the Anti-risk Path Problem of finding a path P G (s,t) in ℘ such that it has minimum risk. We will show that this problem can be solved in O(mn+n 2log n) time suppose that at most one edge may be blocked, where n and m denote the number of vertices and edges in G, respectively. This research is supported by NSF of China under Grants 70525004, 60736027, 70121001 and Postdoctoral Science Foundation of China under Grant 20060401003.  相似文献   

5.
Let R and F be two disjoint edge sets in an n-dimensional hypercube Q n . We give two constructing methods to build a Hamiltonian cycle or path that includes all the edges of R but excludes all of F. Besides, considering every vertex of Q n incident to at most n−2 edges of F, we show that a Hamiltonian cycle exists if (A) |R|+2|F|≤2n−3 when |R|≥2, or (B) |R|+2|F|≤4n−9 when |R|≤1. Both bounds are tight. The analogous property for Hamiltonian paths is also given. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday. Lih-Hsing Hsu’s research project is partially supported by NSC 95-2221-E-233-002. Shu-Chung Liu’s research project is partially supported by NSC 90-2115-M-163-003 and 95-2115-M-163-002. Yeong-Nan Yeh’s research project is partially supported by NSC 95-2115-M-001-009.  相似文献   

6.
On domination number of Cartesian product of directed paths   总被引:2,自引:2,他引:0  
Let γ(G) denote the domination number of a digraph G and let P m P n denote the Cartesian product of P m and P n , the directed paths of length m and n. In this paper, we give a lower and upper bound for γ(P m P n ). Furthermore, we obtain a necessary and sufficient condition for P m P n to have efficient dominating set, and determine the exact values: γ(P 2P n )=n, g(P3\square Pn)=n+é\fracn4ù\gamma(P_{3}\square P_{n})=n+\lceil\frac{n}{4}\rceil, g(P4\square Pn)=n+é\frac2n3ù\gamma(P_{4}\square P_{n})=n+\lceil\frac{2n}{3}\rceil, γ(P 5P n )=2n+1 and g(P6\square Pn)=2n+é\fracn+23ù\gamma(P_{6}\square P_{n})=2n+\lceil\frac{n+2}{3}\rceil.  相似文献   

7.
In a graph G, a vertex dominates itself and its neighbors. A subset SeqV(G) is an m-tuple dominating set if S dominates every vertex of G at least m times, and an m-dominating set if S dominates every vertex of GS at least m times. The minimum cardinality of a dominating set is γ, of an m-dominating set is γ m , and of an m-tuple dominating set is mtupledom. For a property π of subsets of V(G), with associated parameter f_π, the k-restricted π-number r k (G,f_π) is the smallest integer r such that given any subset K of (at most) k vertices of G, there exists a π set containing K of (at most) cardinality r. We show that for 1< k < n where n is the order of G: (a) if G has minimum degree m, then r k (G m ) < (mn+k)/(m+1); (b) if G has minimum degree 3, then r k (G,γ) < (3n+5k)/8; and (c) if G is connected with minimum degree at least 2, then r k (G,ddom) < 3n/4 + 2k/7. These bounds are sharp. Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal.  相似文献   

8.
We study the probabilistic model in the key tree management problem. Users have different behaviors. Normal users have probability p to issue join/leave request while the loyal users have probability zero. Given the numbers of such users, our objective is to construct a key tree with minimum expected updating cost. We observe that a single LUN (Loyal User Node) is enough to represent all loyal users. When 1−p≤0.57 we prove that the optimal tree that minimizes the cost is a star. When 1−p>0.57, we try to bound the size of the subtree rooted at every non-root node. Based on the size bound, we construct the optimal tree using dynamic programming algorithm in O(nK+K 4) time where K=min {4(log (1−p)−1)−1,n} and n is the number of normal users.  相似文献   

9.
Let f(n) be the maximum integer such that for every set F of at most f(n) vertices of the hypercube Q n , there exists a cycle of length at least 2 n ?2|F| in Q n ?F. Casta?eda and Gotchev conjectured that $f(n)=\binom{n}{2}-2$ . We prove this conjecture. We also prove that for every set F of at most (n 2+n?4)/4 vertices of Q n , there exists a path of length at least 2 n ?2|F|?2 in Q n ?F between any two vertices such that each of them has at most 3 neighbors in F. We introduce a new technique of potentials which could be of independent interest.  相似文献   

10.
Finding the anti-block vital edge of a shortest path between two nodes   总被引:1,自引:1,他引:0  
Let P G (s,t) denote a shortest path between two nodes s and t in an undirected graph G with nonnegative edge weights. A detour at a node uP G (s,t)=(s,…,u,v,…,t) is defined as a shortest path P Ge (u,t) from u to t which does not make use of (u,v). In this paper, we focus on the problem of finding an edge e=(u,v)∈P G (s,t) whose removal produces a detour at node u such that the ratio of the length of P Ge (u,t) to the length of P G (u,t) is maximum. We define such an edge as an anti-block vital edge (AVE for short), and show that this problem can be solved in O(mn) time, where n and m denote the number of nodes and edges in the graph, respectively. Some applications of the AVE for two special traffic networks are shown. This research is supported by NSF of China under Grants 70471035, 70525004, 701210001 and 60736027, and PSF of China under Grant 20060401003.  相似文献   

11.
In a series of 2 papers, Kang, Du and Tian solved the existence problem for G-decomposition of λ K n when G is any simple graph with 6 vertices and 7 edges, except when G is the graph T=K 4K 2. Notice that a T-decomposition can be considered to be a Pairwise Balanced Design in which each block of size 4 has been matched to a block of size 2. In this paper we remove this exception for all λ≥2. The case when λ=1 is also addressed. This paper is written in honor of Frank Hwang on the occasion of his 65th birthday.  相似文献   

12.
Semidefinite programming (SDP) relaxations are proving to be a powerful tool for finding tight bounds for hard discrete optimization problems. This is especially true for one of the easier NP-hard problems, the Max-Cut problem (MC). The well-known SDP relaxation for Max-Cut, here denoted SDP1, can be derived by a first lifting into matrix space and has been shown to be excellent both in theory and in practice.Recently the present authors have derived a new relaxation using a second lifting. This new relaxation, denoted SDP2, is strictly tighter than the relaxation obtained by adding all the triangle inequalities to the well-known relaxation. In this paper we present new results that further describe the remarkable tightness of this new relaxation. Let denote the feasible set of SDP2 for the complete graph with n nodes, let F n denote the appropriately defined projection of into , the space of real symmetric n × n matrices, and let C n denote the cut polytope in . Further let be the matrix variable of the SDP2 relaxation and X F n be its projection. Then for the complete graph on 3 nodes, F 3 = C 3 holds. We prove that the rank of the matrix variable of SDP2 completely characterizes the dimension of the face of the cut polytope in which the corresponding matrix X lies. This shows explicitly the connection between the rank of the variable Y of the second lifting and the possible locations of the projected matrix X within C 3. The results we prove for n = 3 cast further light on how SDP2 captures all the structure of C 3, and furthermore they are stepping stones for studying the general case n 4. For this case, we show that the characterization of the vertices of the cut polytope via rank Y = 1 extends to all n 4. More interestingly, we show that the characterization of the one-dimensional faces via rank Y = 2 also holds for n 4. Furthermore, we prove that if rank Y = 2 for n 3, then a simple algorithm exhibits the two rank-one matrices (corresponding to cuts) which are the vertices of the one-dimensional face of the cut polytope where X lies.  相似文献   

13.
The wide diameter of a graph is an important parameter to measure fault-tolerance of interconnection network. This paper proves that for any two vertices in de Bruijn undirected graph UB(d,n), there are 2d−2 internally disjoint paths of length at most 2n+1. Therefore, the (2d−2)-wide diameter of UB(d,n) is not greater than 2n+1. Dedicated to Professor Frank K. Hwang on the occasion of his sixty fifth birthday.  相似文献   

14.
A set S of vertices in a graph G=(V,E) is a total restrained dominating set (TRDS) of G if every vertex of G is adjacent to a vertex in S and every vertex of VS is adjacent to a vertex in VS. The total restrained domination number of G, denoted by γ tr (G), is the minimum cardinality of a TRDS of G. In this paper we characterize the claw-free graphs G of order n with γ tr (G)=n. Also, we show that γ tr (G)≤nΔ+1 if G is a connected claw-free graph of order n≥4 with maximum degree Δn−2 and minimum degree at least 2 and characterize those graphs which achieve this bound.  相似文献   

15.
This paper analyzes the conditions under which consistent estimation can be achieved in instrumental variables (IV) regression when the available instruments are weak and the number of instruments, Kn, goes to infinity with the sample size. We show that consistent estimation depends importantly on the strength of the instruments as measured by rn, the rate of growth of the so‐called concentration parameter, and also on Kn. In particular, when Kn→∞, the concentration parameter can grow, even if each individual instrument is only weakly correlated with the endogenous explanatory variables, and consistency of certain estimators can be established under weaker conditions than have previously been assumed in the literature. Hence, the use of many weak instruments may actually improve the performance of certain point estimators. More specifically, we find that the limited information maximum likelihood (LIML) estimator and the bias‐corrected two‐stage least squares (B2SLS) estimator are consistent when , while the two‐stage least squares (2SLS) estimator is consistent only if Kn/rn→0 as n→∞. These consistency results suggest that LIML and B2SLS are more robust to instrument weakness than 2SLS.  相似文献   

16.
A graph G=(V,E) is Hamiltonian connected if there exists a Hamiltonian path between any two vertices in G. Let P 1=(u 1,u 2,…,u |V|) and P 2=(v 1,v 2,…,v |V|) be any two Hamiltonian paths of G. We say that P 1 and P 2 are independent if u 1=v 1,u |V|=v |V|, and u i v i for 1<i<|V|. A cubic graph G is 2-independent Hamiltonian connected if there are two independent Hamiltonian paths between any two different vertices of G. A graph G is 1-Hamiltonian if GF is Hamiltonian for any FVE with |F|=1. A graph G is super 3*-connected if there exist i internal disjoint paths spanning G for i=1,2,3. It is proved that every super 3*-connected graph is 1-Hamiltonian. In this paper, we prove that every cubic 2-independent Hamiltonian connected graph is also 1-Hamiltonian. We present some cubic 2-independent Hamiltonian connected graphs that are super 3*-connected, some cubic 2-independent Hamiltonian connected graphs that are not super 3*-connected, some super 3*-connected graphs that are not 2-independent Hamiltonian connected, and some cubic 1-Hamiltonian graphs that are Hamiltonian connected but neither 2-independent Hamiltonian connected nor super 3*-connected. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday. This work was supported in part by the National Science Council of the Republic of China under Contract NSC 94-2213-E-233-011.  相似文献   

17.
This paper considers tests for structural instability of short duration, such as at the end of the sample. The key feature of the testing problem is that the number, m, of observations in the period of potential change is relatively small—possibly as small as one. The well‐known F test of Chow (1960) for this problem only applies in a linear regression model with normally distributed iid errors and strictly exogenous regressors, even when the total number of observations, n+m, is large. We generalize the F test to cover regression models with much more general error processes, regressors that are not strictly exogenous, and estimation by instrumental variables as well as least squares. In addition, we extend the F test to nonlinear models estimated by generalized method of moments and maximum likelihood. Asymptotic critical values that are valid as n→∞ with m fixed are provided using a subsampling‐like method. The results apply quite generally to processes that are strictly stationary and ergodic under the null hypothesis of no structural instability.  相似文献   

18.
The problems dealt with in this paper are generalizations of the set cover problem, min{cx | Ax b, x {0,1}n}, where c Q+n, A {0,1}m × n, b 1. The covering 0-1 integer program is the one, in this formulation, with arbitrary nonnegative entries of A and b, while the partial set cover problem requires only mK constrains (or more) in Ax b to be satisfied when integer K is additionall specified. While many approximation algorithms have been recently developed for these problems and their special cases, using computationally rather expensive (albeit polynomial) LP-rounding (or SDP-rounding), we present a more efficient purely combinatorial algorithm and investigate its approximation capability for them. It will be shown that, when compared with the best performance known today and obtained by rounding methods, although its performance comes short in some special cases, it is at least equally good in general, extends for partial vertex cover, and improves for weighted multicover, partial set cover, and further generalizations.  相似文献   

19.
For a weighted 2-edge connected graph G=(V,E), we are to find a “minimum risk path” from source s to destination t. This is a shortest s?t path under the assumption that at most one edge on the path may be blocked. The fact that the edge is blocked is known only when we reach a site adjacent to the blocked edge. If n and m are the number of nodes and edges of G, then we show that this problem can be solved in O(n 2) time using only simple data structures. This is an improvement over the previous O(mn+n 2logn) time algorithm. Moreover, with use of more complicated data structures like Fibonacci Heaps and transmuters the time can be further reduced to O(m+nlogn).  相似文献   

20.
Let k 5 be a fixed integer and let m = (k – 1)/2. It is shown that the independence number of a C k-free graph is at least c 1[ d(v)1/(m – 1)](m – 1)/m and that, for odd k, the Ramsey number r(C k, K n) is at most c 2(n m + 1/log n)1/m , where c 1 = c 1(m) > 0 and c 2 = c 2(m) > 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号