首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A five-parameter extension of the Weibull distribution capable of modelling a bathtub-shaped hazard rate function is introduced and studied. The beauty and importance of the new distribution lies in its ability to model both monotone and non-monotone failure rates that are quite common in lifetime problems and reliability. The proposed distribution has a number of well-known lifetime distributions as special sub-models, such as the Weibull, extreme value, exponentiated Weibull, generalized Rayleigh and modified Weibull (MW) distributions, among others. We obtain quantile and generating functions, mean deviations, Bonferroni and Lorenz curves and reliability. We provide explicit expressions for the density function of the order statistics and their moments. For the first time, we define the log-Kumaraswamy MW regression model to analyse censored data. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is determined. Two applications illustrate the potentiality of the proposed distribution.  相似文献   

2.
A simple competing risk distribution as a possible alternative to the Weibull distribution in lifetime analysis is proposed. This distribution corresponds to the minimum between exponential and Weibull distributions. Our motivation is to take account of both accidental and aging failures in lifetime data analysis. First, the main characteristics of this distribution are presented. Then, the estimation of its parameters are considered through maximum likelihood and Bayesian inference. In particular, the existence of a unique consistent root of the likelihood equations is proved. Decision tests to choose between an exponential, Weibull and this competing risk distribution are presented. And this alternative model is compared to the Weibull model from numerical experiments on both real and simulated data sets, especially in an industrial context.  相似文献   

3.
In applications of survival analysis, the failure rate function may frequently present a unimodal shape. In such cases, the log-normal and log-logistic distributions are used. In this paper, we shall be concerned only with parametric forms, so a location-scale regression model based on the odd log-logistic Weibull distribution is proposed for modelling data with a decreasing, increasing, unimodal and bathtub failure rate function as an alternative to the log-Weibull regression model. For censored data, we consider a classic method to estimate the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Further, for different parameter settings, sample sizes and censoring percentages, various simulations are performed. In addition, the empirical distribution of some modified residuals is determined and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the new regression model applied to censored data. We analyse a real data set using the log-odd log-logistic Weibull regression model.  相似文献   

4.
A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.  相似文献   

5.
The paper analyses the distribution of times from HIV seroconversion to the first AIDS defining illness for a subcohort of the Western Australian HIV Cohort Study for whom the seroconversion date is known to fall within a calendar time window. The analysis is based on a generalised gamma model for the incubation times and a piecewise constant distribution for the conditional times of seroconversion given the seroconversion windows. This allows flexible hazard shapes and also allows comparison of goodness of fit of the gamma and Weibull distributions which are often used for modelling incubation times. Computational issues are discussed. In these data, neither age at seroconversion, nor calendar time of seroconversion, nor the identification of a seroconversion illness appears to afFect incubation distributions. The Weibull distribution appears to provide a reasonable fit. The distribution of times from seroconversion to an HIV-related death is also briefly considered.  相似文献   

6.
The p -variate Burr distribution has been derived, developed, discussed and deployed by various authors. In this paper a score statistic for testing independence of the components, equivalent to testing for p independent Weibull against a p -variate Burr alternative, is obtained. Its null and non-null properties are investigated with and without nuisance parameters and including the possibility of censoring. Two applications to real data are described. The test is also discussed in the context of other Weibull mixture models.  相似文献   

7.
In this paper, we introduce a new family of transmuted distributions, the cubic rank transmutation map distribution. This new proposal increases the flexibility of the transmuted distributions enabling the modelling of more complex data such as ones possessing bimodal hazard rates. In order to illustrate the usefulness of the cubic rank transmutation map, we use two well-known lifetime distributions, namely the Weibull and log-logistic models. Several mathematical properties of these new distributions, namely the cubic rank transmuted Weibull distribution and the cubic rank transmuted log-logistic distribution, are derived. Then, the maximum likelihood estimation of the model parameters is described. A simulation study designed to assess the properties of this estimation procedure is then carried out. Finally, applications of the proposed models and their fit are illustrated with some datasets and the corresponding diagnostic analyses are also provided.  相似文献   

8.
Models of infectious disease over contact networks offer a versatile means of capturing heterogeneity in populations during an epidemic. Highly connected individuals tend to be infected at a higher rate early during an outbreak than those with fewer connections. A powerful approach based on the probability generating function of the individual degree distribution exists for modelling the mean field dynamics of outbreaks in such a population. We develop the same idea in a stochastic context, by proposing a comprehensive model for 1‐week‐ahead incidence counts. Our focus is inferring contact network (and other epidemic) parameters for some common degree distributions, in the case when the network is non‐homogeneous ‘at random’. Our model is initially set within a susceptible–infectious–removed framework, then extended to the susceptible–infectious–removed–susceptible scenario, and we apply this methodology to influenza A data.  相似文献   

9.
Fisher Information for Two Gamma Frailty Bivariate Weibull Models   总被引:1,自引:0,他引:1  
The asymptotic properties of frailty models for multivariate survival data are not well understood. To study this aspect, the Fisher information is derived in the standard bivariate gamma frailty model, where the survival distribution is of Weibull form conditional on the frailty. For comparison, the Fisher information is also derived in the bivariate gamma frailty model, where the marginal distribution is of Weibull form.  相似文献   

10.
The univariate fatigue life distribution proposed by Birnbaum and Saunders [A new family of life distributions. J Appl Probab. 1969;6:319–327] has been used quite effectively to model times to failure for materials subject to fatigue and for modelling lifetime data and reliability problems. In this article, we introduce a Birnbaum–Saunders (BS) distribution in the multivariate setting. The new multivariate model arises in the context of conditionally specified distributions. The proposed multivariate model is an absolutely continuous distribution whose marginals are univariate BS distributions. General properties of the multivariate BS distribution are derived and the estimation of the unknown parameters by maximum likelihood is discussed. Further, the Fisher's information matrix is determined. Applications to real data of the proposed multivariate distribution are provided for illustrative purposes.  相似文献   

11.
Inverse Weibull (IW) distribution is one of the widely used probability distributions for nonnegative data modelling, specifically, for describing degradation phenomena of mechanical components. In this paper, by compounding IW and power series distributions we introduce a new lifetime distribution. The compounding procedure follows the same set-up carried out by Adamidis and Loukas [A lifetime distribution with decreasing failure rate. Stat Probab Lett. 1998;39:35–42]. We provide mathematical properties of this new distribution such as moments, estimation by maximum likelihood with censored data, inference for a large sample and the EM algorithm to determine the maximum likelihood estimates of the parameters. Furthermore, we characterize the proposed distributions using a simple relationship between two truncated moments and maximum entropy principle under suitable constraints. Finally, to show the flexibility of this type of distributions, we demonstrate applications of two real data sets.  相似文献   

12.
In this paper, we introduce a new family of discrete distributions and study its properties. It is shown that the new family is a generalization of discrete Marshall-Olkin family of distributions. In particular, we study generalized discrete Weibull distribution in detail. Discrete Marshall-Olkin Weibull distribution, exponentiated discrete Weibull distribution, discrete Weibull distribution, discrete Marshall-Olkin generalized exponential distribution, exponentiated geometric distribution, generalized discrete exponential distribution, discrete Marshall-Olkin Rayleigh distribution and exponentiated discrete Rayleigh distribution are sub-models of generalized discrete Weibull distribution. We derive some basic distributional properties such as probability generating function, moments, hazard rate and quantiles of the generalized discrete Weibull distribution. We can see that the hazard rate function can be decreasing, increasing, bathtub and upside-down bathtub shape. Estimation of the parameters are done using maximum likelihood method. A real data set is analyzed to illustrate the suitability of the proposed model.  相似文献   

13.
The concept of distribution form developed in Brenner and Fraser (1980) is modified and extended to cover the more general context involving a class of distribution for form. This extension underlies the choice of a particular structural model for the three-parameter Weibull in Evans, Fraser and Massam (1982). The extended definition of distribution form is based on the requirement of objectivity in modelling (Fraser 1979). Three characterizations of this objectivity each require that the class of response presentations have closure under composition and thus be expressible in terms of a group. In particular, this implies that empirical support would not observationally be available for that generalization of a structural model called astructured model (Fraser 1972; the term functional model has been used inappropriately by Bunke, 1975 and Dawid and Stone, 1982).  相似文献   

14.
A parametric modelling for interval data is proposed, assuming a multivariate Normal or Skew-Normal distribution for the midpoints and log-ranges of the interval variables. The intrinsic nature of the interval variables leads to special structures of the variance–covariance matrix, which is represented by five different possible configurations. Maximum likelihood estimation for both models under all considered configurations is studied. The proposed modelling is then considered in the context of analysis of variance and multivariate analysis of variance testing. To access the behaviour of the proposed methodology, a simulation study is performed. The results show that, for medium or large sample sizes, tests have good power and their true significance level approaches nominal levels when the constraints assumed for the model are respected; however, for small samples, sizes close to nominal levels cannot be guaranteed. Applications to Chinese meteorological data in three different regions and to credit card usage variables for different card designations, illustrate the proposed methodology.  相似文献   

15.
ABSTRACT

Extra-binomial variation in longitudinal/clustered binomial data is frequently observed in biomedical and observational studies. The usual generalized estimating equations method treats the extra-binomial parameter as a constant across all subjects. In this paper, a two-parameter variance function modelling the extraneous variance is proposed to account for heterogeneity among subjects. The new approach allows modelling the extra-binomial variation as a function of the mean and binomial size.  相似文献   

16.
Alice L. Morais 《Statistics》2017,51(2):294-313
We extend the Weibull power series (WPS) class of distributions to the new class of extended Weibull power series (EWPS) class of distributions. The EWPS distributions are related to series and parallel systems with a random number of components, whereas the WPS distributions [Morais AL, Barreto-Souza W. A compound class of Weibull and power series distributions. Computational Statistics and Data Analysis. 2011;55:1410–1425] are related to series systems only. Unlike the WPS distributions, for which the Weibull is a limiting special case, the Weibull law is a particular case of the EWPS distributions. We prove that the distributions in this class are identifiable under a simple assumption. We also prove stochastic and hazard rate order results and highlight that the shapes of the EWPS distributions are markedly more flexible than the shapes of the WPS distributions. We define a regression model for the EWPS response random variable to model a scale parameter and its quantiles. We present the maximum likelihood estimator and prove its consistency and asymptotic normal distribution. Although series and parallel systems motivated the construction of this class, the EWPS distributions are suitable for modelling a wide range of positive data sets. To illustrate potential uses of this model, we apply it to a real data set on the tensile strength of coconut fibres and present a simple device for diagnostic purposes.  相似文献   

17.
We propose bivariate Weibull regression model with heterogeneity (frailty or random effect) which is generated by Weibull distribution. We assume that the bivariate survival data follow bivariate Weibull of Hanagal (Econ Qual Control 19:83–90, 2004). There are some interesting situations like survival times in genetic epidemiology, dental implants of patients and twin births (both monozygotic and dizygotic) where genetic behavior (which is unknown and random) of patients follows a known frailty distribution. These are the situations which motivate to study this particular model. We propose two-stage maximum likelihood estimation for hierarchical likelihood in the proposed model. We present a small simulation study to compare these estimates with the true value of the parameters and it is observed that these estimates are very close to the true values of the parameters.  相似文献   

18.
A large number of models have been derived from the two-parameter Weibull distribution including the inverse Weibull (IW) model which is found suitable for modeling the complex failure data set. In this paper, we present the Bayesian inference for the mixture of two IW models. For this purpose, the Bayes estimates of the parameters of the mixture model along with their posterior risks using informative as well as the non-informative prior are obtained. These estimates have been attained considering two cases: (a) when the shape parameter is known and (b) when all parameters are unknown. For the former case, Bayes estimates are obtained under three loss functions while for the latter case only the squared error loss function is used. Simulation study is carried out in order to explore numerical aspects of the proposed Bayes estimators. A real-life data set is also presented for both cases, and parameters obtained under case when shape parameter is known are tested through testing of hypothesis procedure.  相似文献   

19.
In this article, the proportional hazard model with Weibull frailty, which is outside the range of the exponential family, is used for analysing the right-censored longitudinal survival data. Complex multidimensional integrals are avoided by using hierarchical likelihood to estimate the regression parameters and to predict the realizations of random effects. The adjusted profile hierarchical likelihood is adopted to estimate the parameters in frailty distribution, during which the first- and second-order methods are used. The simulation studies indicate that the regression-parameter estimates in the Weibull frailty model are accurate, which is similar to the gamma frailty and lognormal frailty models. Two published data sets are used for illustration.  相似文献   

20.
A three-parameter extension of the exponential distribution is introduced and studied in this paper. The new distribution is quite flexible and can be used effectively in modelling survival data, reliability problems, fatigue life studies and hydrological data. It can have constant, decreasing, increasing, upside-down bathtub (unimodal), bathtub-shaped and decreasing–increasing–decreasing hazard rate functions. We provide a comprehensive account of the mathematical properties of the new distribution and various structural quantities are derived. We discuss maximum likelihood estimation of the model parameters for complete sample and for censored sample. An empirical application of the new model to real data is presented for illustrative purposes. We hope that the new distribution will serve as an alternative model to other models available in the literature for modelling real data in many areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号