首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multilevel models have been widely applied to analyze data sets which present some hierarchical structure. In this paper we propose a generalization of the normal multilevel models, named elliptical multilevel models. This proposal suggests the use of distributions in the elliptical class, thus involving all symmetric continuous distributions, including the normal distribution as a particular case. Elliptical distributions may have lighter or heavier tails than the normal ones. In the case of normal error models with the presence of outlying observations, heavy-tailed error models may be applied to accommodate such observations. In particular, we discuss some aspects of the elliptical multilevel models, such as maximum likelihood estimation and residual analysis to assess features related to the fitting and the model assumptions. Finally, two motivating examples analyzed under normal multilevel models are reanalyzed under Student-t and power exponential multilevel models. Comparisons with the normal multilevel model are performed by using residual analysis.  相似文献   

2.
In this paper, we consider the full rank multivariate regression model with matrix elliptically contoured distributed errors. We formulate a conjugate prior distribution for matrix elliptical models and derive the posterior distributions of mean and scale matrices. In the sequel, some characteristics of regression matrix parameters are also proposed.  相似文献   

3.
Dolby's (1976) ultrastructural model with no replications is investigated within the class of the elliptical distributions. General asymptotic results are given for the sample covariance matrix S in the presence of incidental parameters. These results are used to study the asymptotic behaviour of some estimators of the slope parameter, unifying and extending existing results in the literature. In particular, under some regularity conditions they are shown to be consistent and asymptotically normal. For the special case of the structural model, some asymptotic relative efficiencies are also reported which show that generalized least squares and the method of moment estimators can be highly inefficient under nonnormality.  相似文献   

4.
A family of distributions generated by an operator acting on generalized normal density is introduced. This family contains as particular cases many known distributions, including the generalized normal, generalized t, and generalized gamma distributions. Several mathematical properties of the family (including expansions, characteristic function, moments, cumulants, and order statistics properties) are derived. Estimation procedures are derived too by the method of moments, method of maximum likelihood, and the method of empirical characteristic function. A real data application is presented. Finally, extensions to the multivariate case are outlined.  相似文献   

5.
In this work, we discuss the class of bilinear GARCH (BL-GARCH) models that are capable of capturing simultaneously two key properties of non-linear time series: volatility clustering and leverage effects. It has often been observed that the marginal distributions of such time series have heavy tails; thus we examine the BL-GARCH model in a general setting under some non-normal distributions. We investigate some probabilistic properties of this model and we conduct a Monte Carlo experiment to evaluate the small-sample performance of the maximum likelihood estimation (MLE) methodology for various models. Finally, within-sample estimation properties were studied using S&P 500 daily returns, when the features of interest manifest as volatility clustering and leverage effects. The main results suggest that the Student-t BL-GARCH seems highly appropriate to describe the S&P 500 daily returns.  相似文献   

6.
For longitudinal time series data, linear mixed models that contain both random effects across individuals and first-order autoregressive errors within individuals may be appropriate. Some statistical diagnostics based on the models under a proposed elliptical error structure are developed in this work. It is well known that the class of elliptical distributions offers a more flexible framework for modelling since it contains both light- and heavy-tailed distributions. Iterative procedures for the maximum-likelihood estimates of the model parameters are presented. Score tests for the presence of autocorrelation and the homogeneity of autocorrelation coefficients among individuals are constructed. The properties of test statistics are investigated through Monte Carlo simulations. The local influence method for the models is also given. The analysed results of a real data set illustrate the values of the models and diagnostic statistics.  相似文献   

7.
We consider n pairs of random variables (X11,X21),(X12,X22),… (X1n,X2n) having a bivariate elliptically contoured density of the form where θ1 θ2 are location parameters and Δ = ((λik)) is a 2 × 2 symmetric positive definite matrix of scale parameters. The exact distribution of the Pearson product-moment correlation coefficient between X1 and X2 is obtained. The usual case when a sample of size n is drawn from a bivariate normal population is a special case of the abovementioned model.  相似文献   

8.
In this paper the conditions under which a broad class of Stein-type estimators dominates the best invariant unbiased estimator of the mean of an elliptically contoured population have been established. The superiority conditions are derived for both known and unknown scale structures. Also an example is given when the general scale matrix is assumed to be known in linear regression.  相似文献   

9.
In this paper we discuss estimation and diagnostic procedures in elliptical multivariate regression models with equicorrelated random errors. Two procedures are proposed for the parameter estimation and the local influence curvatures are derived under some usual perturbation schemes to assess the sensitivity of the maximum likelihood estimates (MLEs). Two motivating examples preliminarily analyzed under normal errors are reanalyzed considering appropriate elliptical distributions. The local influence approach is used to compare the sensitivity of the model estimates.  相似文献   

10.
Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times (e.g., matched pairs experiments, twin, or family data), the shared frailty models were suggested. These models are based on the assumption that frailty acts multiplicatively to hazard rate. In this article, we assume that frailty acts additively to hazard rate. We introduce the shared inverse Gaussian frailty models with three different baseline distributions, namely the generalized log-logistic, the generalized Weibull, and exponential power distribution. We introduce the Bayesian estimation procedure using Markov chain Monte Carlo technique to estimate the parameters involved in these models. We apply these models to a real-life bivariate survival dataset of McGilchrist and Aisbett (1991 McGilchrist, C.A., Aisbett, C.W. (1991). Regression with frailty in survival analysis. Biometrics 47:461466.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]) related to the kidney infection data, and a better model is suggested for the data.  相似文献   

11.
Abstract

Linear Hawkes processes are widely used in many fields and means are the basic and critical information of them. However, there is little research on linear Hawkes processes’ means. In this paper, we present a numerical method based on the Laplace transform and inverse Laplace transform for means of linear Hawkes processes. The advantage of this method is that whatever the kernel function is, we can always obtain the numerical solutions of means for a linear Hawkes process. In addition, this numerical method provides the basic information of linear Hawkes processes by means. As an application, the numerical method is applied in a WeChat network model.  相似文献   

12.
In this article, we consider European option pricing for time-changed Brownian models using Laplace transform. We obtain a general formula for the option price as the integral of a real-valued function involving the Laplace transform of the random time change. Unlike the usual Fourier transform technique, our method does not suffer from difficulties specific to complex integration, such as the evaluation of multiple-valued functions, and allows for a model-independent analysis of the truncation error. In the numerical analysis part, we compare option prices in variance gamma (VG), normal inverse Gaussian (NIG), and generalized hyperbolic (GH) models obtained by Laplace transform with those obtained by the Fourier transform method introduced by Carr and Madan in 1999. The results show that our method converges faster than the Fourier approach when the Laplace transforms of the subordinators decay exponentially, for examples like NIG and GH models.  相似文献   

13.
This paper studies the elliptical statistical affine shape theory under certain particular conditions on the evenness or oddness of the number of landmarks. In such a case, the related distributions are polynomials, and the inference is easily performed; as an example, a landmark data is studied, and the performance of the polynomial density versus the usual series density is compared.  相似文献   

14.
The authors examine the asymptotic behaviour of conditional threshold exceedance probabilities for an elliptically distributed pair (X, Y) of random variables. More precisely, they investigate the limiting behaviour of the conditional distribution of Y given that X becomes extreme. They show that this behaviour differs between regularly and rapidly varying tails.  相似文献   

15.
In this work we consider the generalized upper (k) record values (GURV’s) and generalized lower (k) record values (GLRV’s) arising from half-logistic distribution (HLD) and inverse half-logistic distribution (IHLD). We derive some characterization results of HLD based on some moment relations of generalized upper (k) record values and those of generalized lower (k) record values and accordingly devised some diagnostic tools to identify HLD as a model to the distribution of a population. Similar characterization theorems and diagnostic tools are developed for IHLD as well. Simulation studies are conducted to validate the diagnostic tools devised for both HLD and IHLD.  相似文献   

16.
Meta-analysis refers to a quantitative method for combining results from independent studies in order to draw overall conclusions. We consider hierarchical models including selection models under a skewed heavy tailed error distribution proposed originally by Chen, Dey, and Shao [M. H. Chen, D. K. Dey, Q. M. Shao, A new skewed link model for dichotomous quantal response data, J. Amer. Statist. Assoc. 94 (1983), pp. 1172–1186.] and Branco and Dey [D. Branco and D.K. Dey, A general class of multivariate skew-elliptical distributions, J. Multivariate Anal. 79, pp. 99–113.]. These rich classes of models combine the information of independent studies, allowing investigation of variability both between and within studies and incorporating weight functions. We constructed a detailed computational scheme under skewed normal and skewed Student's t distribution using the MCMC method. Bayesian model selection was conducted by Bayes factor under a different skewed error. Finally, we illustrated our methodology using a real data example taken from Johnson [M.F. Johnson, Comparative efficacy of Naf and SMFP dentifrices in caries prevention: a meta-analysis overview, J Eur. Organ. Caries Res. 27 (1993), pp. 328–336.].  相似文献   

17.
We show that smoothing spline, intrinsic autoregression (IAR) and state-space model can be formulated as partially specified random-effect model with singular precision (SP). Various fitting methods have been suggested for the aforementioned models and this paper investigates the relationships among them, once the models have been placed under a single framework. Some methods have been previously shown to give the best linear unbiased predictors (BLUPs) under some random-effect models and here we show that they are in fact uniformly BLUPs (UBLUPs) under a class of models that are generated by the SP of random effects. We offer some new interpretations of the UBLUPs under models of SP and define BLUE and BLUP in these partially specified models without having to specify the covariance. We also show how the full likelihood inferences for random-effect models can be made for these models, so that the maximum likelihood (ML) and restricted maximum likelihood (REML) estimators can be used for the smoothing parameters in splines, etc.  相似文献   

18.
ABSTRACT

In this article, we consider a (k + 1)n-dimensional elliptically contoured random vector (XT1, X2T, …, XTk, ZT)T = (X11, …, X1n, …, Xk1, …, Xkn, Z1, …, Zn)T and derive the distribution of concomitant of multivariate order statistics arising from X1, X2, …, Xk. Specially, we derive a mixture representation for concomitant of bivariate order statistics. The joint distribution of the concomitant of bivariate order statistics is also obtained. Finally, the usefulness of our result is illustrated by a real-life data.  相似文献   

19.
A flexible family of multivariate models, named multiple stable Tweedie (MST) models, is introduced and produces generalized variance functions which are products of powered components of the mean. These MST models are built from a fixed univariate stable Tweedie variable having a positive value domain, and the remaining random variables given the fixed one are also real independent Tweedie variables, with the same dispersion parameter equal to the fixed component. In this huge family of MST models, generalized variance estimators are explicitly pointed out by maximum likelihood method and, moreover, computably presented for the uniform minimum variance and unbiased approach. The second estimator is brought from modified Lévy measures of MST which lead to some solutions of particular Monge–Ampère equations.  相似文献   

20.
This article presents a new procedure for testing homogeneity of scale parameters from k independent inverse Gaussian populations. Based on the idea of generalized likelihood ratio method, a new generalized p-value is derived. Some simulation results are presented to compare the performance of the proposed method and existing methods. Numerical results show that the proposed test has good size and power performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号