首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article presents parametric bootstrap (PB) approaches for hypothesis testing and interval estimation for the regression coefficients and the variance components of panel data regression models with complete panels. The PB pivot variables are proposed based on sufficient statistics of the parameters. On the other hand, we also derive generalized inferences and improved generalized inferences for variance components in this article. Some simulation results are presented to compare the performance of the PB approaches with the generalized inferences. Our studies show that the PB approaches perform satisfactorily for various sample sizes and parameter configurations, and the performance of PB approaches is mostly the same as that of generalized inferences with respect to the expected lengths and powers. The PB inferences have almost exact coverage probabilities and Type I error rates. Furthermore, the PB procedure can be simply carried out by a few simulation steps, and the derivation is easier to understand and to be extended to the incomplete panels. Finally, the proposed approaches are illustrated by using a real data example.  相似文献   

2.
This article presents parametric bootstrap (PB) approaches for hypothesis testing and interval estimation for the regression coefficients of panel data regression models with incomplete panels. Some simulation results are presented to compare the performance of the PB approaches with the approximate inferences. Our studies show that the PB approaches perform satisfactorily for various sample sizes and parameter configurations, and the performance of PB approaches is mostly better than the approximate methods with respect to the coverage probabilities and the Type I error rates. The PB inferences have almost exact coverage probabilities and Type I error rates. Furthermore, the PB procedure can be simply carried out by a few simulation steps, and the derivation is easier to understand and to be extended to the multi-way error component regression models with unbalanced panels. Finally, the proposed approaches are illustrated by using a real data example.  相似文献   

3.
In this article, the parametric robust regression approaches are proposed for making inferences about regression parameters in the setting of generalized linear models (GLMs). The proposed methods are able to test hypotheses on the regression coefficients in the misspecified GLMs. More specifically, it is demonstrated that with large samples, the normal and gamma regression models can be properly adjusted to become asymptotically valid for inferences about regression parameters under model misspecification. These adjusted regression models can provide the correct type I and II error probabilities and the correct coverage probability for continuous data, as long as the true underlying distributions have finite second moments.  相似文献   

4.
In this paper, some confidence intervals (CIs) for the product of powers of the generalized variances of k multivariate normal populations with possibly different dimensions are proposed. The performance of these CIs in terms of the coverage probabilities and average lengths were evaluated via a Monte Carlo simulation study. The results were found to be satisfactory. To demonstrate utility of the proposed CIs, applications on three real data sets were provided.  相似文献   

5.
One of the indicators for evaluating the capability of a process is the process capability index. In this article, bootstrap confidence intervals of the generalized process capability index (GPCI) proposed by Maiti et al. are studied through simulation, when the underlying distributions are Lindley and Power Lindley distributions. The maximum likelihood method is used to estimate the parameters of the models. Three bootstrap confidence intervals namely, standard bootstrap (SB), percentile bootstrap (PB), and bias-corrected percentile bootstrap (BCPB) are considered for obtaining confidence intervals of GPCI. A Monte Carlo simulation has been used to investigate the estimated coverage probabilities and average width of the bootstrap confidence intervals. Simulation results show that the estimated coverage probabilities of the percentile bootstrap confidence interval and the bias-corrected percentile bootstrap confidence interval get closer to the nominal confidence level than those of the standard bootstrap confidence interval. Finally, three real datasets are analyzed for illustrative purposes.  相似文献   

6.
In this article, the hypothesis testing and interval estimation for the reliability parameter are considered in balanced and unbalanced one-way random models. The tests and confidence intervals for the reliability parameter are developed using the concepts of generalized p-value and generalized confidence interval. Furthermore, some simulation results are presented to compare the performances between the proposed approach and the existing approach. For balanced models, the simulation results indicate that the proposed approach can provide satisfactory coverage probabilities and performs better than the existing approaches across the wide array of scenarios, especially for small sample sizes. For unbalanced models, the simulation results show that the two proposed approaches perform more satisfactorily than the existing approach in most cases. Finally, the proposed approaches are illustrated using two real examples.  相似文献   

7.
The hypothesis testing and interval estimation are considered for the common mean of several normal populations when the variances are unknown and possibly unequal. A new generalized pivotal is proposed based on the best linear unbiased estimator of the common mean and the generalized inference. An exact confidence interval for the common mean is also derived. The generalized confidence interval is illustrated with two numerical examples. The merits of the proposed method are numerically compared with those of the existing methods with respect to their expected lengths, coverage probabilities and powers under different scenarios.  相似文献   

8.
Methods for interval estimation and hypothesis testing about the ratio of two independent inverse Gaussian (IG) means based on the concept of generalized variable approach are proposed. As assessed by simulation, the coverage probabilities of the proposed approach are found to be very close to the nominal level even for small samples. The proposed new approaches are conceptually simple and are easy to use. Similar procedures are developed for constructing confidence intervals and hypothesis testing about the difference between two independent IG means. Monte Carlo comparison studies show that the results based on the generalized variable approach are as good as those based on the modified likelihood ratio test. The methods are illustrated using two examples.  相似文献   

9.
In this article, the problem of testing the equality of coefficients of variation in a multivariate normal population is considered, and an asymptotic approach and a generalized p-value approach based on the concepts of generalized test variable are proposed. Monte Carlo simulation studies show that the proposed generalized p-value test has good empirical sizes, and it is better than the asymptotic approach. In addition, the problem of hypothesis testing and confidence interval for the common coefficient variation of a multivariate normal population are considered, and a generalized p-value and a generalized confidence interval are proposed. Using Monte Carlo simulation, we find that the coverage probabilities and expected lengths of this generalized confidence interval are satisfactory, and the empirical sizes of the generalized p-value are close to nominal level. We illustrate our approaches using a real data.  相似文献   

10.
In this paper, we consider the interval estimation problem on the process capability indices in general random effect model with balanced data. The confidence intervals for three commonly used process capability indices are developed by using the concept of generalized confidence interval. Furthermore, some simulation results on the coverage probability and expected value of the generalized lower confidence limits are reported. The simulation results indicate that the proposed confidence intervals do provide quite satisfactory coverage probabilities.  相似文献   

11.
Recently, Zhang [Simultaneous confidence intervals for several inverse Gaussian populations. Stat Probab Lett. 2014;92:125–131] proposed simultaneous pairwise confidence intervals (SPCIs) based on the fiducial generalized pivotal quantity concept to make inferences about the inverse Gaussian means under heteroscedasticity. In this paper, we propose three new methods for constructing SPCIs to make inferences on the means of several inverse Gaussian distributions when scale parameters and sample sizes are unequal. One of the methods results in a set of classic SPCIs (in the sense that it is not simulation-based inference) and the two others are based on a parametric bootstrap approach. The advantages of our proposed methods over Zhang’s (2014) method are: (i) the simulation results show that the coverage probability of the proposed parametric bootstrap approaches is fairly close to the nominal confidence coefficient while the coverage probability of Zhang’s method is smaller than the nominal confidence coefficient when the number of groups and the variance of groups are large and (ii) the proposed set of classic SPCIs is conservative in contrast to Zhang’s method.  相似文献   

12.
The problem of interval estimation of the stress–strength reliability involving two independent Weibull distributions is considered. An interval estimation procedure based on the generalized variable (GV) approach is given when the shape parameters are unknown and arbitrary. The coverage probabilities of the GV approach are evaluated by Monte Carlo simulation. Simulation studies show that the proposed generalized variable approach is very satisfactory even for small samples. For the case of equal shape parameter, it is shown that the generalized confidence limits are exact. Some available asymptotic methods for the case of equal shape parameter are described and their coverage probabilities are evaluated using Monte Carlo simulation. Simulation studies indicate that no asymptotic approach based on the likelihood method is satisfactory even for large samples. Applicability of the GV approach for censored samples is also discussed. The results are illustrated using an example.  相似文献   

13.
A modified large-sample (MLS) approach and a generalized confidence interval (GCI) approach are proposed for constructing confidence intervals for intraclass correlation coefficients. Two particular intraclass correlation coefficients are considered in a reliability study. Both subjects and raters are assumed to be random effects in a balanced two-factor design, which includes subject-by-rater interaction. Computer simulation is used to compare the coverage probabilities of the proposed MLS approach (GiTTCH) and GCI approaches with the Leiva and Graybill [1986. Confidence intervals for variance components in the balanced two-way model with interaction. Comm. Statist. Simulation Comput. 15, 301–322] method. The competing approaches are illustrated with data from a gauge repeatability and reproducibility study. The GiTTCH method maintains at least the stated confidence level for interrater reliability. For intrarater reliability, the coverage is accurate in several circumstances but can be liberal in some circumstances. The GCI approach provides reasonable coverage for lower confidence bounds on interrater reliability, but its corresponding upper bounds are too liberal. Regarding intrarater reliability, the GCI approach is not recommended because the lower bound coverage is liberal. Comparing the overall performance of the three methods across a wide array of scenarios, the proposed modified large-sample approach (GiTTCH) provides the most accurate coverage for both interrater and intrarater reliability.  相似文献   

14.
In this article, we investigated the bootstrap calibrated generalized confidence limits for process capability indices C pk for the one-way random effect model. Also, we derived Bissell's approximation formula for the lower confidence limit using Satterthwaite's method and calculated its coverage probabilities and expected values. Then we compared it with standard bootstrap (SB) method and generalized confidence interval method. The simulation results indicate that the confidence limit obtained offers satisfactory coverage probabilities. The proposed method is illustrated with the help of simulation studies and data sets.  相似文献   

15.
A new generalized p-value method is proposed for testing the equality of coefficients of variation in k normal populations. Simulation studies show that the type I error probabilities are close to the nominal level. The proposed test is also compared with likelihood ratio test, modified Bennett's test and score test through Monte Carlo simulation, the results demonstrate that the generalized p-value method has satisfactory performance in terms of sizes and powers.  相似文献   

16.
Among statistical inferences, one of the main interests is drawing the inferences about the log-normal means since the log-normal distribution is a well-known candidate model for analyzing positive and right-skewed data. In the past, the researchers only focused on one or two log-normal populations or used the large sample theory or quadratic procedure to deal with several log-normal distributions. In this article, we focus on making inferences on several log-normal means based on the modification of the quadratic method, in which the researchers often used the vector of the generalized variables to deal with the means of the symmetric distributions. Simulation studies show that the quadratic method performs well only for symmetric distributions. However, the modified procedure fits both symmetric and skew distribution. The numerical results show that the proposed modified procedure can provide the confidence interval with coverage probabilities close to the nominal level and the hypothesis testing performed with satisfactory results.  相似文献   

17.
ABSTRACT

In statistical practice, inferences on standardized regression coefficients are often required, but complicated by the fact that they are nonlinear functions of the parameters, and thus standard textbook results are simply wrong. Within the frequentist domain, asymptotic delta methods can be used to construct confidence intervals of the standardized coefficients with proper coverage probabilities. Alternatively, Bayesian methods solve similar and other inferential problems by simulating data from the posterior distribution of the coefficients. In this paper, we present Bayesian procedures that provide comprehensive solutions for inferences on the standardized coefficients. Simple computing algorithms are developed to generate posterior samples with no autocorrelation and based on both noninformative improper and informative proper prior distributions. Simulation studies show that Bayesian credible intervals constructed by our approaches have comparable and even better statistical properties than their frequentist counterparts, particularly in the presence of collinearity. In addition, our approaches solve some meaningful inferential problems that are difficult if not impossible from the frequentist standpoint, including identifying joint rankings of multiple standardized coefficients and making optimal decisions concerning their sizes and comparisons. We illustrate applications of our approaches through examples and make sample R functions available for implementing our proposed methods.  相似文献   

18.
For constructing simultaneous confidence intervals for ratios of means for lognormal distributions, two approaches using a two-step method of variance estimates recovery are proposed. The first approach proposes fiducial generalized confidence intervals (FGCIs) in the first step followed by the method of variance estimates recovery (MOVER) in the second step (FGCIs–MOVER). The second approach uses MOVER in the first and second steps (MOVER–MOVER). Performance of proposed approaches is compared with simultaneous fiducial generalized confidence intervals (SFGCIs). Monte Carlo simulation is used to evaluate the performance of these approaches in terms of coverage probability, average interval width, and time consumption.  相似文献   

19.
In this paper, we present several resampling methods for interval estimation for the common intraclass correlation coefficients. Comparisons are made on the coverage probabilities and average lengths with confidence intervals estimated by using the generalized pivots. Most of the methods proposed in this article produce confidence intervals with better probabilities and shorter average lengths than that produced by using generalized pivots.  相似文献   

20.
In this paper, we consider the empirical likelihood inferences of the partial functional linear model with missing responses. Two empirical log-likelihood ratios of the parameters of interest are constructed, and the corresponding maximum empirical likelihood estimators of parameters are derived. Under some regularity conditions, we show that the proposed two empirical log-likelihood ratios are asymptotic standard Chi-squared. Thus, the asymptotic results can be used to construct the confidence intervals/regions for the parameters of interest. We also establish the asymptotic distribution theory of corresponding maximum empirical likelihood estimators. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths of confidence intervals. An example of real data is also used to illustrate our proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号