首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partial linear single-index model (PLSIM) has both the flexibility of nonparametric treatment and interpretability of linear term, yet existing literatures about it mainly focused on mean regression, and quantile regression analysis is scarce. Based on free knot spline approximation, we apply asymmetric Laplace distribution to implement Bayesian quantile regression, and perform variable selection in linear term and index vector via binary indicators. Our approach is exempt from regularity conditions in frequentist method, and could execute variable selection and quantile regression under mutual posterior correction, which is also the first work to implement them jointly for PLSIM in fully Bayesian framework. The numerical simulation manifests the superiority of our approach to previous methods, which embodied in better efficiency of variable selection, index vector estimates and link function approximation with different error distributions. For illustration of its application, we build a power consumption model of A2/O process in wastewater treatment and emphatically analyze the impact of water quality factors.  相似文献   

2.
This paper presents a Bayesian analysis of partially linear additive models for quantile regression. We develop a semiparametric Bayesian approach to quantile regression models using a spectral representation of the nonparametric regression functions and the Dirichlet process (DP) mixture for error distribution. We also consider Bayesian variable selection procedures for both parametric and nonparametric components in a partially linear additive model structure based on the Bayesian shrinkage priors via a stochastic search algorithm. Based on the proposed Bayesian semiparametric additive quantile regression model referred to as BSAQ, the Bayesian inference is considered for estimation and model selection. For the posterior computation, we design a simple and efficient Gibbs sampler based on a location-scale mixture of exponential and normal distributions for an asymmetric Laplace distribution, which facilitates the commonly used collapsed Gibbs sampling algorithms for the DP mixture models. Additionally, we discuss the asymptotic property of the sempiparametric quantile regression model in terms of consistency of posterior distribution. Simulation studies and real data application examples illustrate the proposed method and compare it with Bayesian quantile regression methods in the literature.  相似文献   

3.
According to the Atlas of Human Development in Brazil, the income dimension of Municipal Human Development Index (MHDI-I) is an indicator that shows the population''s ability in a municipality to ensure a minimum standard of living to provide their basic needs, such as water, food and shelter. In public policy, one of the research objectives is to identify social and economic variables that are associated with this index. Due to the income inequality, evaluate these associations in quantiles, instead of the mean, could be more interest. Thus, in this paper, we develop a Bayesian variable selection in quantile regression models with hierarchical random effects. In particular, we assume a likelihood function based on the Generalized Asymmetric Laplace distribution, and a spike-and-slab prior is used to perform variable selection. The Generalized Asymmetric Laplace distribution is a more general alternative than the Asymmetric Laplace one, which is a common approach used in quantile regression under the Bayesian paradigm. The performance of the proposed method is evaluated via a comprehensive simulation study, and it is applied to the MHDI-I from municipalities located in the state of Rio de Janeiro.  相似文献   

4.
ABSTRACT

Quantile regression models, as an important tool in practice, can describe effects of risk factors on the entire conditional distribution of the response variable with its estimates robust to outliers. However, there is few discussion on quantile regression for longitudinal data with both missing responses and measurement errors, which are commonly seen in practice. We develop a weighted and bias-corrected quantile loss function for the quantile regression with longitudinal data, which allows both missingness and measurement errors. Additionally, we establish the asymptotic properties of the proposed estimator. Simulation studies demonstrate the expected performance in correcting the bias resulted from missingness and measurement errors. Finally, we investigate the Lifestyle Education for Activity and Nutrition study and confirm the effective of intervention in producing weight loss after nine month at the high quantile.  相似文献   

5.
基于2007年1月至2017年12月月度数据,本文首先选取金融机构极值风险、金融体系间的传染效应、金融市场的波动性和不稳定性、流动性和信用风险4个层面的14个代表性指标测度了系统性金融风险;然后运用分位数回归度量了单个系统性风险指标对宏观经济的影响;最后运用偏最小二乘分位数回归法构建一个系统性金融风险综合指标进一步实证分析系统性金融风险对宏观经济的影响。研究结果表明:①单个系统性金融风险指数中机构极值风险类别下的指标对宏观经济的影响最大,其中金融体系巨灾风险指数影响效果最显著;②运用偏最小二乘分位数回归构造的系统性金融风险综合指标较之单个系统性金融风险指标,能够更稳健地反映系统性金融风险对宏观经济的影响状况;③从测度效果来看,单个系统性风险指标和系统性金融风险综合指标在下尾分布(0.2分位数)的结果明显优于中间分布(0.5分位数)和上尾分布(0.8分位数)。  相似文献   

6.
Due to computational challenges and non-availability of conjugate prior distributions, Bayesian variable selection in quantile regression models is often a difficult task. In this paper, we address these two issues for quantile regression models. In particular, we develop an informative stochastic search variable selection (ISSVS) for quantile regression models that introduces an informative prior distribution. We adopt prior structures which incorporate historical data into the current data by quantifying them with a suitable prior distribution on the model parameters. This allows ISSVS to search more efficiently in the model space and choose the more likely models. In addition, a Gibbs sampler is derived to facilitate the computation of the posterior probabilities. A major advantage of ISSVS is that it avoids instability in the posterior estimates for the Gibbs sampler as well as convergence problems that may arise from choosing vague priors. Finally, the proposed methods are illustrated with both simulation and real data.  相似文献   

7.
Varying covariate effects often manifest meaningful heterogeneity in covariate-response associations. In this paper, we adopt a quantile regression model that assumes linearity at a continuous range of quantile levels as a tool to explore such data dynamics. The consideration of potential non-constancy of covariate effects necessitates a new perspective for variable selection, which, under the assumed quantile regression model, is to retain variables that have effects on all quantiles of interest as well as those that influence only part of quantiles considered. Current work on l 1-penalized quantile regression either does not concern varying covariate effects or may not produce consistent variable selection in the presence of covariates with partial effects, a practical scenario of interest. In this work, we propose a shrinkage approach by adopting a novel uniform adaptive LASSO penalty. The new approach enjoys easy implementation without requiring smoothing. Moreover, it can consistently identify the true model (uniformly across quantiles) and achieve the oracle estimation efficiency. We further extend the proposed shrinkage method to the case where responses are subject to random right censoring. Numerical studies confirm the theoretical results and support the utility of our proposals.  相似文献   

8.
A number of nonstationary models have been developed to estimate extreme events as function of covariates. A quantile regression (QR) model is a statistical approach intended to estimate and conduct inference about the conditional quantile functions. In this article, we focus on the simultaneous variable selection and parameter estimation through penalized quantile regression. We conducted a comparison of regularized Quantile Regression model with B-Splines in Bayesian framework. Regularization is based on penalty and aims to favor parsimonious model, especially in the case of large dimension space. The prior distributions related to the penalties are detailed. Five penalties (Lasso, Ridge, SCAD0, SCAD1 and SCAD2) are considered with their equivalent expressions in Bayesian framework. The regularized quantile estimates are then compared to the maximum likelihood estimates with respect to the sample size. A Markov Chain Monte Carlo (MCMC) algorithms are developed for each hierarchical model to simulate the conditional posterior distribution of the quantiles. Results indicate that the SCAD0 and Lasso have the best performance for quantile estimation according to Relative Mean Biais (RMB) and the Relative Mean-Error (RME) criteria, especially in the case of heavy distributed errors. A case study of the annual maximum precipitation at Charlo, Eastern Canada, with the Pacific North Atlantic climate index as covariate is presented.  相似文献   

9.
分位数回归技术综述   总被引:16,自引:0,他引:16  
普通最小二乘回归建立了在自变量X=x下因变量Y的条件均值与X的关系的线性模型。而分位数回归(Quantile Regression)则利用自变量X和因变量y的条件分位数进行建模。与普通的均值回归相比,它能充分反映自变量X对于因变量y的分布的位置、刻度和形状的影响,有着十分广泛的应用,尤其是对于一些非常关注尾部特征的情况。文章介绍了分位数回归的概念以及分位数回归的估计、检验和拟合优度,回顾了分位数回归的发展过程以及其在一些经济研究领域中的应用,最后做了总结。  相似文献   

10.
Regularization methods for simultaneous variable selection and coefficient estimation have been shown to be effective in quantile regression in improving the prediction accuracy. In this article, we propose the Bayesian bridge for variable selection and coefficient estimation in quantile regression. A simple and efficient Gibbs sampling algorithm was developed for posterior inference using a scale mixture of uniform representation of the Bayesian bridge prior. This is the first work to discuss regularized quantile regression with the bridge penalty. Both simulated and real data examples show that the proposed method often outperforms quantile regression without regularization, lasso quantile regression, and Bayesian lasso quantile regression.  相似文献   

11.
Quantile regression models are a powerful tool for studying different points of the conditional distribution of univariate response variables. Their multivariate counterpart extension though is not straightforward, starting with the definition of multivariate quantiles. We propose here a flexible Bayesian quantile regression model when the response variable is multivariate, where we are able to define a structured additive framework for all predictor variables. We build on previous ideas considering a directional approach to define the quantiles of a response variable with multiple outputs, and we define noncrossing quantiles in every directional quantile model. We define a Markov chain Monte Carlo (MCMC) procedure for model estimation, where the noncrossing property is obtained considering a Gaussian process design to model the correlation between several quantile regression models. We illustrate the results of these models using two datasets: one on dimensions of inequality in the population, such as income and health; the second on scores of students in the Brazilian High School National Exam, considering three dimensions for the response variable.  相似文献   

12.
Coefficient estimation in linear regression models with missing data is routinely carried out in the mean regression framework. However, the mean regression theory breaks down if the error variance is infinite. In addition, correct specification of the likelihood function for existing imputation approach is often challenging in practice, especially for skewed data. In this paper, we develop a novel composite quantile regression and a weighted quantile average estimation procedure for parameter estimation in linear regression models when some responses are missing at random. Instead of imputing the missing response by randomly drawing from its conditional distribution, we propose to impute both missing and observed responses by their estimated conditional quantiles given the observed data and to use the parametrically estimated propensity scores to weigh check functions that define a regression parameter. Both estimation procedures are resistant to heavy‐tailed errors or outliers in the response and can achieve nice robustness and efficiency. Moreover, we propose adaptive penalization methods to simultaneously select significant variables and estimate unknown parameters. Asymptotic properties of the proposed estimators are carefully investigated. An efficient algorithm is developed for fast implementation of the proposed methodologies. We also discuss a model selection criterion, which is based on an ICQ ‐type statistic, to select the penalty parameters. The performance of the proposed methods is illustrated via simulated and real data sets.  相似文献   

13.
We study variable selection in quantile regression with multiple responses. Instead of applying conventional penalized quantile regression to each response separately, it is desired to solve them simultaneously when the sparsity patterns of the regression coefficients for different responses are similar, which is often the case in practice. In this paper, we propose employing a hierarchical penalty that enables us to detect a common sparsity pattern shared between different responses as well as additional sparsity patterns within the selected variables. We establish the oracle property of the proposed method and demonstrate it offers better performance than existing approaches.  相似文献   

14.
Quantile regression has gained increasing popularity as it provides richer information than the regular mean regression, and variable selection plays an important role in the quantile regression model building process, as it improves the prediction accuracy by choosing an appropriate subset of regression predictors. Unlike the traditional quantile regression, we consider the quantile as an unknown parameter and estimate it jointly with other regression coefficients. In particular, we adopt the Bayesian adaptive Lasso for the maximum entropy quantile regression. A flat prior is chosen for the quantile parameter due to the lack of information on it. The proposed method not only addresses the problem about which quantile would be the most probable one among all the candidates, but also reflects the inner relationship of the data through the estimated quantile. We develop an efficient Gibbs sampler algorithm and show that the performance of our proposed method is superior than the Bayesian adaptive Lasso and Bayesian Lasso through simulation studies and a real data analysis.  相似文献   

15.
Single index model conditional quantile regression is proposed in order to overcome the dimensionality problem in nonparametric quantile regression. In the proposed method, the Bayesian elastic net is suggested for single index quantile regression for estimation and variables selection. The Gaussian process prior is considered for unknown link function and a Gibbs sampler algorithm is adopted for posterior inference. The results of the simulation studies and numerical example indicate that our propose method, BENSIQReg, offers substantial improvements over two existing methods, SIQReg and BSIQReg. The BENSIQReg has consistently show a good convergent property, has the least value of median of mean absolute deviations and smallest standard deviations, compared to the other two methods.  相似文献   

16.
One advantage of quantile regression, relative to the ordinary least-square (OLS) regression, is that the quantile regression estimates are more robust against outliers and non-normal errors in the response measurements. However, the relative efficiency of the quantile regression estimator with respect to the OLS estimator can be arbitrarily small. To overcome this problem, composite quantile regression methods have been proposed in the literature which are resistant to heavy-tailed errors or outliers in the response and at the same time are more efficient than the traditional single quantile-based quantile regression method. This paper studies the composite quantile regression from a Bayesian perspective. The advantage of the Bayesian hierarchical framework is that the weight of each component in the composite model can be treated as open parameter and automatically estimated through Markov chain Monte Carlo sampling procedure. Moreover, the lasso regularization can be naturally incorporated into the model to perform variable selection. The performance of the proposed method over the single quantile-based method was demonstrated via extensive simulations and real data analysis.  相似文献   

17.
In this article, a new composite quantile regression estimation approach is proposed for estimating the parametric part of single-index model. We use local linear composite quantile regression (CQR) for estimating the nonparametric part of single-index model (SIM) when the error distribution is symmetrical. The weighted local linear CQR is proposed for estimating the nonparametric part of SIM when the error distribution is asymmetrical. Moreover, a new variable selection procedure is proposed for SIM. Under some regularity conditions, we establish the large sample properties of the proposed estimators. Simulation studies and a real data analysis are presented to illustrate the behavior of the proposed estimators.  相似文献   

18.
在工资差距分解问题中,研究者经常会遇到样本选择偏差问题,直接忽略会导致最终估计结果产生严重偏差,同时在众多工资差距分解方法中,相比于均值分解,分布分解方法更受研究者青睐。针对参数分位回归,本文首次提出可加形式与非可加形式的样本选择参数分位回归(SSPQR)模型,并基于这两类样本选择参数分位回归模型给出修正样本选择偏差后的参数分位回归工资差距分布分解方法。运用上述方法及已有的工资分布分解方法,借助CHNS2015年度城镇数据,本文研究了我国城镇男女工资差距及差距分解问题,得出以下结论:①男女工资差距主要来源是性别歧视问题;②经过样本选择偏差修正后,实际的工资差距更大,歧视问题更严重;③男女工资差距程度在不同分位点上结果不同,换句话说,我们不能简单地仅从平均水平来判断工资差距程度;④与其他已有方法计算结果比较发现,SSPQR计算的工资差距程度更大。  相似文献   

19.
We propose a general framework for regression models with functional response containing a potentially large number of flexible effects of functional and scalar covariates. Special emphasis is put on historical functional effects, where functional response and functional covariate are observed over the same interval and the response is only influenced by covariate values up to the current grid point. Historical functional effects are mostly used when functional response and covariate are observed on a common time interval, as they account for chronology. Our formulation allows for flexible integration limits including, e.g., lead or lag times. The functional responses can be observed on irregular curve-specific grids. Additionally, we introduce different parameterizations for historical effects and discuss identifiability issues.The models are estimated by a component-wise gradient boosting algorithm which is suitable for models with a potentially high number of covariate effects, even more than observations, and inherently does model selection. By minimizing corresponding loss functions, different features of the conditional response distribution can be modeled, including generalized and quantile regression models as special cases. The methods are implemented in the open-source R package FDboost. The methodological developments are motivated by biotechnological data on Escherichia coli fermentations, but cover a much broader model class.  相似文献   

20.
Abstract. We propose a Bayesian semiparametric methodology for quantile regression modelling. In particular, working with parametric quantile regression functions, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed non‐parametric prior probability models allow the shape of the error density to adapt to the data and thus provide more reliable predictive inference than models based on parametric error distributions. We consider extensions to quantile regression for data sets that include censored observations. Moreover, we employ dependent Dirichlet processes to develop quantile regression models that allow the error distribution to change non‐parametrically with the covariates. Posterior inference is implemented using Markov chain Monte Carlo methods. We assess and compare the performance of our models using both simulated and real data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号